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1 Ceres

A spacecraft is in a circular orbit with radius 𝑟 “ 1.3 au in the ecliptic plane. An additional
speed of 5 km{s is instantly given to the spacecraft in the direction of movement, so its orbit
intersects with the orbit of 1 Ceres. What will be the relative velocity of the spacecraft and
Ceres when the spacecraft crosses its orbit for the first time? The distance between Ceres
and the spacecraft at that time is 106 km. Assume the orbit of Ceres to be circular with radius
𝑟𝐶 “ 2.8 au. The directions of orbital motion of the objects are the same.

Solution:

First, we determine the parameters of the orbit along which the spacecraft will move
after increasing its velocity. Let us write the law of conservation of energy per unit mass
of the spacecraft:

𝑉 2

2
´

𝐺Md

𝑟
“ ´

𝐺Md

2𝑎
(1)

where 𝑟 is the current distance from the Sun and 𝑎 is the semi-major axis of the orbit.

Note. The mass of the Sun is not indicated in the table. Although its value is well known, it can
be easily estimated using the Earth’s orbital parameters. By Kepler’s third law,

𝑇‘ “ 2𝜋

d

p1 auq3

𝐺Md

ñ Md “

ˆ

2𝜋

𝑇‘

˙2

¨
p1 auq3

𝐺
“ 2.0 ¨ 1030 kg.

We should estimate the velocity of the spacecraft. The velocity in the initial circular orbit

𝑉0 “

c

𝐺Md

𝑟
“ 2.6 ¨ 104 m{s.

The total velocity after the correction is

𝑉𝜋 “ 𝑉0 ` 5.0 ¨ 103 m{s “ 3.1 ¨ 104 m{s.

Therefore, taking into account (1) the semi-major axis of the elliptic orbit is

𝑎 “
𝐺Md𝑟

2𝐺Md ´ 𝑉 2
𝜋 𝑟

“ 3.4 ¨ 1011 m “ 2.24 au.

At the initial moment of time, the velocity vector was perpendicular to the heliocentric radius
vector. The final velocity is also perpendicular to the radius vector, that is, after increasing
the velocity, the spacecraft starts moving from the perihelion of the orbit, 𝑟𝜋 :“ 𝑟.

Next, we estimate the eccentricity of the orbit:

𝑟𝜋 “ 𝑎p1 ´ 𝑒q ñ 𝑒 “ 1 ´
𝑟𝜋
𝑎

“ 1 ´
1.3

2.24
“ 0.42.
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Let us determine the velocity 𝑉1 of the spacecraft at the moment of crossing the orbit of Ceres.
According to the vis-viva equation,

𝑉 2
1 “ 𝐺Md

ˆ

2

𝑟𝐶
´

1

𝑎

˙

;

𝑉1 “

d

6.67 ¨ 10´11 ˆ 2.0 ¨ 1030 ˆ

ˆ

2

2.8 ¨ 1.496 ¨ 1011
´

1

2.24 ¨ 1.496 ¨ 1011

˙

“ 1.5 ¨ 104 m{s.

Next, we determine the angle 𝜃 between the velocity vector and the radius vector:

𝑉1𝑟𝐶 sin 𝜃 “ 𝑉𝜋𝑟𝜋 “
a

𝐺Md𝑎p1 ´ 𝑒2q ñ sin 𝜃 “

a

𝐺Md𝑎p1 ´ 𝑒2q

𝑉1𝑟𝐶
;

𝜃 “ arcsin

a

6.67 ¨ 10´11 ˆ 2.0 ¨ 1030 ˆ 2.24 ¨ 1.496 ¨ 1011 ˆ p1 ´ 0.422q

1.54 ¨ 104 ˆ 2.8 ¨ 1.496 ¨ 1011
“ arcsin 0.939 “ 70˝.

𝑆𝑟𝜋

𝑟𝐶

𝜋 �⃗�𝐶

�⃗�1

𝛼

𝜃

On the scale of the orbit, the distance of 106 km is very small, so we can assume that Ceres
and the spacecraft are almost at the same point of the orbit. At the same time, this distance
is large enough that we can ignore the attraction of Ceres. Indeed, the radius of the Earth’s
sphere of influence is « 106 km. Ceres is only 3 times farther from the Sun than the Earth, but
its mass is 4 orders of magnitude less than the Earth’s1.

The velocity of Ceres

𝑉𝑐 “

c

𝐺Md

𝑟𝑐
“ 1.8 ¨ 104 m{s,

1The conclusion is quite obvious, so there is no need to calculate the exact radius of the sphere of influence.
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is perpendicular to the radius vector. Then the angle between the velocity vectors
of the spacecraft and Ceres at the approach is equal to 𝛼 “ 180˝ ´ 𝜃 ´ 90˝ “ 20˝.

Therefore, the relative velocity will be

∆𝑉 “

b

𝑉 2
𝑐 ` 𝑉 2

1 ´ 2𝑉𝑐𝑉1 cos𝛼 “

“
a

p1.8 ¨ 104q2 ` p1.5 ¨ 104q2 ´ 2 ˆ p1.8 ¨ 104q ˆ p1.5 ¨ 104q ˆ cos 20˝ “ 6.5 ¨ 103 m{s.

Marking Scheme:

• Velocity of Ceres 𝑉𝑐 — 1 pt.

• Velocity of the spacecraft in the initial circular orbit 𝑉0 — 1 pt.

• Velocity of the spacecraft after the correction 𝑉𝜋 — 1 pt.

• Semi-major axis of the elliptic orbit 𝑎 or proper use of energy convervation — 1 pt.

• Eccentricity 𝑒 or proper use of angular momentum convervation — 1 pt.

• Velocity of the spacecraft crossing the orbit of Ceres 𝑉1 — 1 pt.

• Angle between the velocity and the radius vectors 𝜃 — 1 pt.

• Angle between the velocity vectors of the spacecraft and Ceres 𝛼 — 1 pt.

• Expression for ∆𝑉 and evaluation — 1 pt ` 1 pt.
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2 Straight Forward

Currently, a star has a proper motion of 0.52{year with a parallax of 0.082. The hydrogen H𝛼

line in the stellar spectrum is observed at wavelength 𝜆 “ 6561.0 Å. Assume the star’s velocity
vector to be constant. Estimate the radial velocity of the star in 20 000 years.

Solution: First, we determine the current distance to the star from the known parallax 𝜛:

𝑟 “
1

𝜛 r2s
“ 12.5 pc.

Then, let us find the current tangential velocity of the star. It is quite convenient to use the ratio
1 au “ 1 pc ˆ 12:

𝑉𝜏,1 “ 𝜇 r
2/yrs ¨ 𝑟 rpcs “ 0.5 ˆ

1

0.08
rau/yrs “ 6.25 rau/yrs “ 29.6 rkm{ss. 2

Next, we estimate the current radial velocity. According to the Doppler effect formula

𝑉𝑟,1

𝑐
“

𝜆obs ´ 𝜆0

𝜆0

ñ 𝑉𝑟,1 “ 𝑐 ¨
𝜆obs ´ 𝜆0

𝜆0

“ 3 ¨ 105 ˆ
6561.0 ´ 6562.8

6562.8
“ ´82.3 km{s.

The total velocity is

𝑉 “

b

𝑉 2
𝜏,1 ` 𝑉 2

𝑟,1 “
?
82.32 ` 29.62 “ 87 km{s.

In 20 000 years, the star will cover a distance of

|𝑀1𝑀2| “ 87 km{s ˆ 20 000 ¨ p365.25 ˆ 24 ˆ 60 ˆ 60q s “ 5.5 ¨ 1013 km “ 1.8 pc.

𝑆

𝑀1

𝑀2

�⃗� �⃗�𝑟,2

�⃗�𝜏,2

�⃗�

�⃗�𝑟,1

�⃗�𝜏,1

𝑟

𝛾

𝜃

2It is also remarkable that 30 km{s « 𝑉‘ “ 2𝜋 au{yr « 6.28 au{yr « 𝑉𝜏,1.
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𝑆 denotes the Sun, 𝑀1 is the current position of the star and 𝑀2 is the position of the star
in future. Let us write the law of cosines for △𝑀1𝑀2𝑆:

|𝑀2𝑆|
2

“ |𝑀1𝑀2|
2

` |𝑀1𝑆|
2

´ 2 ¨ |𝑀1𝑀2| ¨ |𝑀1𝑆| cos 𝛾

where |𝑀1𝑆| “
1

𝜛 r2s
“ 12.5 pc, 𝛾 “ arccos

𝑉𝑟,1

𝑉
“ 19˝.

Consequently,

|𝑀2𝑆|
2

“ 1.82 ` 12.52 ´ 2 ¨ 1.8 ¨ 12.5 cos 19˝
ñ |𝑀2𝑆| “ 10.8 pc.

Next, we write the law of cosines for the same triangle:

|𝑀1𝑆|
2

“ |𝑀1𝑀2|
2

` |𝑀2𝑆|
2

´ 2 ¨ |𝑀1𝑀2| ¨ |𝑀2𝑆| cos 𝜃;

cos 𝜃 “
|𝑀1𝑀2|

2 ` |𝑀2𝑆|2 ´ |𝑀1𝑆|2

2 ¨ |𝑀1𝑀2| ¨ |𝑀2𝑆|
“

1.82 ` 10.82 ´ 12.52

2 ¨ 1.8 ¨ 10.8
“ ´0.935 ñ 𝜃 “ 159˝.

The radial velocity is
𝑉𝑟,2 “ 𝑉 cos 𝜃 “ 87 ¨ cos 159˝

“ ´81 km{s.

Marking Scheme:

• Current distance to the star |𝑆𝑀1| ” 𝑟 — 1 pt.

• Current tangential velocity of the star 𝑉𝜏,1 — 1 pt.

• Current radial velocity of the star 𝑉𝑟,1 — 1 pt.

• Geometry of the problem (preferably, a drawing) — 1 pt.

• Distance covered in 20 000 years |𝑀1𝑀2| — 1 pt.

• Direction of the star’s velocity vector, angle 𝛾 — 1 pt.

• Distance to the star in 20 000 years |𝑆𝑀2| — 2 pt.

• Angle 𝜃 — 1 pt.

• Radial velocity of the star in 20 000 years 𝑉𝑟,2 — 1 pt.
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3 Apparently Invisible

A planet orbits a main sequence star with apparent bolometric magnitude 𝑚 “ `7m in a circular
orbit with period 𝑇 “ 570 years. The star is 385 light years from the Sun.

a) Estimate the maximum angular distance between the planet and the star for an observer
on the Earth.

b) Compare the obtained value with the angular resolution of the James Webb Space
Telescope (JWST) at wavelength 𝜆 “ 3.8 µm.

The effective diameter of JWST is 𝐷 “ 6.5 m. Neglect the interstellar extinction.

Solution:

a) In order to determine the maximum angular distance between a star and a planet, we need
to know the radius of the planet’s orbit, and for this we need to estimate the mass of the star.

Recalling3 that 1 pc “ 3.26 light years, we estimate the luminosity based on the apparent
magnitude and distance, namely

𝑀 “ 𝑚 ` 5 ´ 5 lg 𝑟 “ 7 ` 5 ´ 5 lg
385

3.26
“ 1.6m,

𝑀 ´ 𝑀d “ ´2.5 lg
𝐿

𝐿d

ñ 𝐿 “ 100.4p𝑀d´𝑀q𝐿d “ 100.4p4.7´1.6q𝐿d “ 17𝐿d.

According to the mass–luminosity relation for main sequence stars, for such luminosities there
is a power law relationship between mass M and luminosity 𝐿:

𝐿 9 M4.

Therefore, the mass of the star is

M “

ˆ

𝐿

𝐿d

˙1{4

Md « 2Md .

Next, we estimate the radius of the orbit:

𝑇 2

𝑎3
“

4𝜋2

𝐺M
ñ 𝑎 “

3

c

𝐺M𝑇 2

4𝜋2
;

𝑎 “
3

c

6.67 ¨ 10´11 ˆ p2 ˆ 2.0 ¨ 1030q ˆ p570 ˆ 365.25 ¨ 24 ¨ 60 ¨ 60q2

4𝜋2
“ 1.3 ¨ 1013 m “ 87 au.

The maximum angular distance is

𝛼 “
𝑎

𝑟
“

87 au
385
3.26

¨ 206265 au
« 4 ¨ 10´6 rad « 0.72.

31 pc “ 206 265 au “ 3.086 ¨ 1013 km “ 3.086 ¨ 1016 m “ 1.03 ¨ 108 s ˆ 𝑐 “ 3.26 ˆ 𝑐 ˆ 365.25 d :“ 3.26 ly.
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b) Next, we estimate the angular resolution of JWST:

𝛽 „
𝜆

𝐷
“

3.8 ¨ 10´6

6.5
« 6 ¨ 10´7 rad « 0.12.

It can be noticed that the maximum angular distance between the planet and the star exceeds
the angular resolution of the telescope.

The problem discusses the planetary system HIP 65426, the planet was observed directly
(Carter et al., 2023, arXiv:2208.14990).

Marking Scheme:

• Absolute magnitude of the star 𝑀 — 1.5 pt.

• Luminosity of the star 𝐿 — 1.5 pt.

• Mass estimation: 𝐿 9 M𝛼

– 𝛼 P r3.5; 4.0s — 1.5 pt.
– 𝛼 P r3.0; 3.5q — 1 pt.

• Radius of the orbit 𝑎 — 1.5 pt.

• Maximum angular distance 𝛼 — 1 pt.

• Angular resolution estimation 𝛽 — 2 pt.

• Conclusion about the resolution — 1 pt.
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4 Hot Potato

A main sequence star has radius 𝑅 “ 3.9𝑅d, effective temperature 𝑇 “ 9520 K, and parallax
𝜛 “ 0.0112. An asteroid orbits the star with an orbital period of 1 year. The asteroid rotates
quite rapidly. The asteroid’s surface reflects 𝐴 “ 30% of incident radiation.

Estimate:

a) the average density of the star,

b) the orbital radius of the asteroid,

c) the effective surface temperature of the asteroid.

d) Is it possible to observe this star from the Earth with the naked eye?
The bolometric correction at a given temperature is approximately ´0.15.

Solution:

a) First, we determine the luminosity of the star. According to the Stefan–Boltzmann law,

𝐿 “ 4𝜋𝑅2𝜎𝑇 4.

We can compare the parameters of the star with the parameters of the Sun, and obtain the ratio

𝐿

𝐿d

“

ˆ

𝑅

𝑅d

˙2 ˆ

𝑇

𝑇d

˙4

ñ 𝐿 “ 3.92 ¨

ˆ

9520

5800

˙4

𝐿d “ 1.1 ¨ 102𝐿d .

According to the mass–luminosity relation for main sequence stars, there is a power law
relationship between mass M and luminosity 𝐿. For the relevant mass range that is

𝐿

𝐿d

“

$

&

%

pM{Mdq
4 , 0.4 ă M{Md ă 2;

1.5 pM{Mdq
3.5 , 2 ă M{Md ă 20.

We do not know in advance which of the dependencies is valid for a given star, but in fact, this
does not greatly affect the estimation:

𝐿 «

$

&

%

3.2Md, for 𝐿 9 M4,

3.4Md, for 𝐿 9 M3.5.

The value belongs to the scope of the second expression. One way or another, any such estimate
is accepted.

The average density of the star is

x𝜌y “
M

𝑉
“

M
4
3
𝜋𝑅3

“
3.4 ¨ 2.0 ¨ 1030 kg

4
3
𝜋 p3.9 ˆ 6.96 ¨ 108 mq

3 “ 8 ¨ 101 kg{m3.



Ω𝒲𝒜𝒪‚ 2023 ˛ Theoretical Round ˛ Solutions Page 9 of 22

b) According to Kepler’s third law,

𝑇 2

𝑎3
“

4𝜋2

𝐺M
ñ 𝑎 “

3

c

𝐺M𝑇 2

4𝜋2

𝑎 “
3

d

6.67 ¨ 10´11 ˆ p3.4 ˆ 2.0 ¨ 1030q ˆ p365.25 ¨ 24 ¨ 60 ¨ 60q
2

4𝜋2
“ 2.3 ¨ 1011 m “ 1.5 au.

c) Radiation flux of the star at the orbit of the asteroid is given by 𝐸 “
𝐿

4𝜋𝑎2
.

The absorption rate of the asteroid with radius 𝑟 depends on its cross section and albedo 𝐴:

ℰ “ 𝐸 ¨ p1 ´ 𝐴q ¨ 𝜋𝑟2.

At equilibrium, the absorption rate is equal to the emission rate of the asteroid blackbody
radiation. Therefore,

𝐿

4𝜋𝑎2
¨ p1 ´ 𝐴q ¨ 𝜋𝑟2 “ 4𝜋𝑟2𝜎𝑇 4

𝑎 ñ 𝑇𝑎 “
4

c

𝐿p1 ´ 𝐴q

16𝜋𝑎2𝜎
;

𝑇𝑎 “ 4

d

p1.1 ¨ 102q ˆ p3.828 ¨ 1026q ˆ p1 ´ 0.30q

16𝜋 ¨ p2.3 ¨ 1011q2 ˆ 5.67 ¨ 10´8
“ 665 K.

d) First, we estimate the bolometric absolute magnitude of the star according to the Pogson
formula:

𝑀bol “ 𝑀d ´ 2.5 lg
𝐿

𝐿d

“ 4.74m
´ 2.5 lgp1.1 ¨ 102q “ ´0.36m,

𝑀𝑉 “ 𝑀bol ´ BC “ ´0.36m
` 0.15m

“ ´0.21m.

Next, we write the relation of absolute magnitude, apparent magnitude and distance. Worth
noting, we should try to take the interstellar extinction into account, so we consider the term
𝐴𝑉 𝑟. The interstellar medium is irregularly distributed4, however, we may assume the averaged
value of absorption to be 𝐴𝑉 „ 2m{kpc “ 0.002m{pc. Therefore,

𝑚𝑉 “ 𝑀𝑉 ´ 5 ` 5 lg 𝑟 ` 𝐴𝑉 𝑟 “ 𝑀𝑉 ´ 5 ´ 5 lg𝜛 ` 0.002 ¨
1

𝜛
“

“ ´0.21𝑚 ´ 5 ´ 5 lg 0.011 ` 0.002 ˆ
1

0.011
“ 4.8m.

Such a star is visible to the naked eye as a faint point source.

4We may assume the star to be located in the galactic disk. The reason is that the star is quite massive
and the lifetime on the main sequence is inversely proportional to M3, so the star is quite young and it did not
have time to decline much from the galactic plane where it was formed.
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Marking Scheme:

• Average density:

– Stefan–Boltzmann law — 1 pt.
– Mass estimation — 1 pt.
– Average density of the star x𝜌y — 1 pt.

• Orbital radius:

– Kepler’s third law — 1 pt.
– Orbital radius of the asteroid 𝑎 — 1 pt.

• Asteroid temperature:

– Thermal equilibrium equation for the asteroid — 1 pt.
– Surface temperature of the asteroid 𝑇𝑎 — 1 pt.

• Naked eye observation:

– Pogson formula — 1 pt.
– Taking BC into account — 1 pt.
– Conclusion about the visibility of the star — 1 pt.

There is no penalty for not taking into account interstellar absorption.
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5 Hide and Seek

At the 50th parallel (50˝ N), some star rises just before Antares p𝛼𝐴 “ 16h 29m; 𝛿𝐴 “ ´26˝ 261q

disappears behind the horizon, and it sets just when Sirius p𝛼𝑆 “ 6h 45m; 𝛿𝑆 “ ´16˝ 431q

appears. The star is brighter than `1.5m. Estimate the equatorial coordinates of the star. What
is the name of this star? Consider the Earth to be perfectly spherical with no atmosphere.

Solution:
First we determine hour angle 𝑡𝐴 of Antares setting. Using spherical law of cosines
for the spherical triangle with vertices in the north celestial pole, zenith and Antares —
navigational triangle, we have [2 pt]

cos 𝑧𝐴 “ sin𝜙 sin 𝛿𝐴 ` cos𝜙 cos 𝛿𝐴 cos 𝑡𝐴. (2)

We assume 𝑧𝐴 “ 90˝ because we neglect the refraction. Therefore, [1 pt]

cos 𝑡𝐴 “ ´ tan𝜙 tan 𝛿𝐴 “ 0.592 ñ 𝑡𝐴 “ 53.7˝.

Antares setting sidereal time is [1 pt]

𝑠1 “ 𝑡𝐴 ` 𝛼𝐴 “
53.7˝

15˝{h
` 16h 29m

“ 20.06h.

Similarly, we estimate hour angle 𝑡𝑆 and sidereal time 𝑠2 at the time of Sirius rising above
the horizon [1 pt]:

cos 𝑡𝑆 “ ´ tan𝜙 tan 𝛿𝑆 “ 0.359 ñ 𝑡𝑆 “ ´69.0˝,

𝑠2 “
´69˝

15˝{h
` 6h 45m

“ 2.15h.

The sidereal time of the star’s upper culmination is equal to its right ascension [2 pt]:

𝛼‹ “ 𝑠𝑐 “
𝑠1 ` 𝑠2

2
« 23h.

The hour angle of the star setting is

𝑡‹ “ 𝑠𝑐 ´ 𝑠1 “ 23.1h
´ 20.06h

“ 3.04h.

Therefore, we may estimate the declination [2 pt] by the formula (2):

cos 𝑡‹ “ ´ tan𝜙 tan 𝛿‹ ñ tan 𝛿‹ “ ´
cos 𝑡‹

tan𝜙
“ ´0.587 ñ 𝛿‹ « ´30˝.

These coordinates are quite similar to the coordinates of Fomalhaut (𝛼 Piscis Austrinus;
𝛼 “ 22h 57m; 𝛿 “ ´29˝ 371) [1 pt].
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6 Space Vodka

The table below shows the characteristics of two space masers.
Which source is larger in size and how many times larger?

Water Methanol
H2O CH3OH

Wavelength, cm 1.35 4.5

Flux density, kJy 1500 0.15

Brightness temperature, log 𝑇 rKs 17 6.5

Parallax, mas 2.5 0.75

Solution:

An astrophysical maser is a naturally occurring source of stimulated spectral line emission.
Brightness temperature is the temperature at which a black body would have to be in order
to duplicate the observed intensity in a spectral line; it is not the real thermodynamic
temperature of some body!

Distance 𝑑 to the radio source is inversely proportional to its parallax 𝜛: 𝑑 9 𝜛´1 [2 pt].

Flux density 𝑆𝜈 “ 𝐵𝜈Ω [2 pt], where Ω is the solid angle corresponding to the source,
Ω 9 𝑅2𝑑´2 [2 pt]. 𝑅 is the spatial size of the source. 𝐵𝜈 is spectral radiance which depends
on the brightness temperature 𝑇 and emission wavelength 𝜆. As brightness temperature
corresponds to some black body and energy of photons in radio is significantly lower than
thermal energy of the matter (ℎ𝑐{𝜆 ! 𝑘𝐵𝑇 ), 𝐵𝜈 can be expressed via the Rayleigh–Jeans law5

[2 pt]:

𝐵𝜈 “
2𝑘𝐵𝑇𝜈

2

𝑐2
“

2𝑘𝐵𝑇

𝜆2
9 𝑇𝜆´2.

Therefore, the size of the source

𝑅 9
?
Ω𝑑2 9 𝑑

c

𝑆𝜈

𝐵𝜈

9
1

𝜛

c

𝑆𝜈

𝑇𝜆´2
9

𝜆

𝜛

c

𝑆𝜈

𝑇
.

The size ratio is

𝑅2

𝑅1

“
𝜆2

𝜆1

¨
𝜛1

𝜛2

¨

d

𝑆𝜈,2

𝑆𝜈,1

¨
𝑇1

𝑇2

“
4.5

1.35
ˆ

2.5

0.75
ˆ

c

0.15

1500
ˆ

1017

106.5
« 2 ¨ 104.

So, the methanol maser is much bigger than the water one [2 pt].

5The flux density is measured in janskys, essential non-SI units excessively used in radio astronomy;
1 Jy “ 10´26 pW{m2q{Hz. That is why in this problem, the radiation laws should be in terms
of frequencies. If one uses 𝐵𝜆 instead of 𝐵𝜈 , the result changes several times, just as blackbody emission
peaks at wavelength 𝜆max, or at frequency 𝜈max ‰ 𝑐{𝜆max.
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7 One Thousand and One Nights

On a rocky planet in a circular orbit around a star, equatorial and ecliptic coordinates
are arranged in the same way as on the Earth. The local ecliptic passes through points with
equatorial coordinates p𝛼1 “ 20.4˝; 𝛿1 “ 22.5˝q and p𝛼2 “ 74.7˝; 𝛿2 “ 49.0˝q. Calculate
the fraction of the planet’s surface where polar nights can occur. Neglect the atmosphere.

Solution:

First, we determine the inclination 𝜀 of the ecliptic to the equator as the inclination of a great
circle passing through the points p𝛼1; 𝛿1q, p𝛼2; 𝛿2q.

Both the right ascension and the ecliptic longitude are counted from the local point of the vernal
equinox p0; 0q — that is the point of intersection of the ecliptic and the celestial equator.
Therefore, the inclination can be determined from a spherical triangle with vertices at the vernal
equinox point P, a point on the ecliptic 𝑀 and the projection of this point on the celestial
equator 𝑀K.

P

𝑀

𝑀K𝜀
𝛼

𝜆 𝛿

Using the five-part rule and the law of sines we obtain:

sin𝜆 cos 𝜀 “ sin𝛼 cos 𝛿 ´ cos𝛼 sin 𝛿 cos 90˝
ñ sin𝜆 “

sin𝛼 cos 𝛿

cos 𝜀
,

sin 𝛿

sin 𝜀
“

sin𝜆

sin 90˝
.

Substitution of sin𝜆 yields

sin 𝛿

sin 𝜀
“

sin𝛼 cos 𝛿

cos 𝜀
ñ tan 𝛿 “ sin𝛼 tan 𝜀 .

Next, we can get an estimate of the inclination from the data on any of the two points,

𝜀 “ arctan
tan 𝛿1
sin𝛼1

“ arctan
tan 22.5˝

sin 20.4˝
“ arctan 1.19 “ 50˝.
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Another approach. We introduce a Cartesian coordinate system centered at the place of observation.
The 𝑥-axis is directed to the local point of the vernal equinox, the 𝑧-axis is directed to the north celestial
pole, the 𝑦-axis complements the axes to a right-handed coordinate system. The vectors of two points
are as follows:

�⃗�1 “

¨

˚

˚

˝

cos 𝛿1 cos𝛼1

cos 𝛿1 sin𝛼1

sin 𝛿1

˛

‹

‹

‚

, �⃗�2 “

¨

˚

˚

˝

cos 𝛿2 cos𝛼2

cos 𝛿2 sin𝛼2

sin 𝛿2

˛

‹

‹

‚

.

Next, we determine the vector �⃗� of the pole of the great circle (namely, the north ecliptic pole) using
the vector product

�⃗� “
�⃗�1 ˆ �⃗�2

|�⃗�1 ˆ �⃗�2|

where

�⃗�1 ˆ �⃗�2 “

⃒⃒⃒⃒
⃒⃒⃒⃒ �⃗� �⃗� �⃗�

cos 𝛿1 cos𝛼1 cos 𝛿1 sin𝛼1 sin 𝛿1

cos 𝛿2 cos𝛼2 cos 𝛿2 sin𝛼2 sin 𝛿2

⃒⃒⃒⃒
⃒⃒⃒⃒ “

⃒⃒⃒⃒
⃒⃒⃒⃒ �⃗� �⃗� �⃗�

0.866 0.322 0.383

0.173 0.633 0.755

⃒⃒⃒⃒
⃒⃒⃒⃒ ,

�⃗�1 ˆ �⃗�2 “

¨

˚

˚

˝

0.322 ˆ 0.755 ´ 0.633 ˆ 0.383

0.173 ˆ 0.383 ´ 0.866 ˆ 0.755

0.866 ˆ 0.633 ´ 0.173 ˆ 0.322

˛

‹

‹

‚

“

¨

˚

˚

˝

0.000671

´0.587571

0.492472

˛

‹

‹

‚

,

|�⃗�1 ˆ �⃗�2| “
a

0.0006712 ` p´0.587571q2 ` 0.4924722 “ 0.767,

�⃗� “

¨

˚

˚

˝

0.0009

´0.7664

0.6424

˛

‹

‹

‚

“

¨

˚

˚

˝

cos 𝜃 cos𝛼0

cos 𝜃 sin𝛼0

sin 𝜃

˛

‹

‹

‚

.

�⃗� points to the north ecliptic pole. 𝜃 “ 90˝ ´ 𝜀 and 𝛼0 are the declination and the right ascension
of the north ecliptic pole respectively,

𝜃 “ arcsin𝑤𝑧 “ 40˝ ñ 𝜀 “ arccos𝑤𝑧 “ 50˝.

Polar nights are possible only at latitudes with a modulus greater than 𝜙0 “ 90˝ ´ 𝜀 “ 𝜃 “

40˝. The corresponding points form two spherical caps around the poles. Let us determine
the fraction of the planet’s surface with latitudes modulus more than 40˝:

𝜂 “
2𝑆cap

𝑆sphere
“

2 ¨ p2𝜋𝑅ℎq

4𝜋𝑅2

where
ℎ “ 𝑅r1 ´ cosp90˝

´ 𝜙0qs “ 𝑅p1 ´ sin 𝜃q

is the height of the spherical cap.
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Finally,

𝜂 “
2 ˆ 2𝜋𝑅2p1 ´ sin 𝜃q

4𝜋𝑅2
“ 1 ´ sin 40˝

“ 0.357 “ 35.7%.

Marking Scheme:

• Inclination of the ecliptic.

In case of using spherical trigonometry:

– Distance between two points on a sphere — 2 pt.
– Choosing a valid spherical triangle — 2 pt.
– Inclination 𝜀 — 1 pt.

It is acceptable to write the great circle equation for the ecliptic in polar coordinates
without derivation.

In case of using Cartesian coordinates:

– Conversion from ecliptic coordinates to Cartesian coordinates:
formula + evaluation — 1 pt ` 1 pt.

– Vector multiplication — 2 pt.
– Inclination 𝜀 — 1 pt.

• Fraction of the surface with polar nights:

– Limiting latitudes (|𝜙| “ 90˝ ´ 𝜀) — 2 pt.
– Area of spherical caps — 2 pt.
– Fraction 𝜂 — 1 pt.
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8 Omega Sirius

Estimate the distance between 𝛼 and 𝜔 Canis Majoris in parsecs.

𝛼 CMa 𝜔 CMa

Right ascension 06h 45m 08.917s 07h 14m 48.653s

Declination ´16˝ 421 58.022 ´26˝ 461 21.612

Apparent magnitude in V band ´1.46 3.82

Spectral type A1Vm B2.5Ve

Bolometric correction 0 ´2.2

Mass, Md 2.063 ˘ 0.023 10.1 ˘ 0.7

Solution:

Using spherical law of cosines we obtain the angular distance between the stars:

cos 𝜃 “ sin 𝛿1 sin 𝛿2 ` cos 𝛿1 cos 𝛿2 cosp𝛼1 ´ 𝛼2q,

cos 𝜃 “ sinp´16.72˝
q sinp´26.77˝

q ` cosp´16.72˝
q cosp´26.77˝

q cos

ˆ

29.66m ˆ
1˝

4m

˙

“ 0.9775,

𝜃 “ arccos 0.9775 “ 12.2˝.

Both stars are main sequence stars — luminosity class V, so we can assume for such masses
there is a power law relationship between mass M and luminosity 𝐿:

𝐿

𝐿d

“ 1.5

ˆ

M

Md

˙3.5

.

Comparing the stars with the Sun (𝑀d “ 4.74m) we obtain absolute bolometric magnitudes of
them:

𝑀 “ 𝑀d ´ 2.5 log
𝐿

𝐿d

“ 𝑀d ´ 2.5 log

˜

1.5

ˆ

M

Md

˙3.5
¸

;

𝑀1 “ 4.74 ´ 2.5 log
`

1.5 ¨ 2.0633.5
˘

“ 1.5m,

𝑀2 “ 4.74 ´ 2.5
`

1.5 ¨ 10.13.5
˘

“ ´4.5m.

Absolute magnitudes in V band are

𝑀𝑉,1 “ 𝑀1 “ 1.5m,

𝑀𝑉,2 “ 𝑀2 ´ 𝐵𝐶 “ ´4.5 ` 2.2 “ ´2.3m.

Now we can estimate distances to the stars from known absolute 𝑀𝑉 and apparent 𝑚𝑉 visual
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magnitudes:

𝑀𝑉 “ 𝑚𝑉 ` 5 ´ 5 log 𝑑 ñ 𝑑 “ 100.2p𝑚𝑉 ´𝑀𝑉 `5q;

𝑑1 “ 100.2ˆp´1.46´1.5`5q
“ 2.6 pc,

𝑑2 “ 100.2ˆp3.82`2.3`5q
“ 168 pc.

The obtained values are not very accurate due to the approximations made.

Finally, the distance between stars is

𝑑 “

b

𝑑21 ` 𝑑22 ´ 2𝑑1𝑑2 cos 𝜃 « 166 pc.

Actually, since 𝑑2 " 𝑑1, we could conclude immediately that 𝑑 « 𝑑2.

Note. In the solution above 𝜔 CMa turned out to be noticeably fainter than in reality.
This is mainly due to the fact that the mass–luminosity relation for massive stars does
not provide an accurate estimate of luminosity. Due to the significant scatter in the mass-
luminosity diagram for massive stars, it is acceptable to use a proportionality 𝐿 9 M4, which
results in a final estimate of the distance between the stars of „ 240 pc.

Marking Scheme:

• Angular distance between the stars — 3 pt.

• Absolute bolometric magnitudes estimation: 𝐿 9 M𝛼

– 𝛼 P r3.5; 4.0s — 2 pt.
– 𝛼 P r3.0; 3.5q — 1 pt.

• Absolute visual magnitudes — 1 pt.

• Distance to each star — 2 pt.

• Distance between the stars — 2 pt.
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9 Get Into the Loop

An artificial satellite moves in an orbit with eccentricity 𝑒 ą 0, semi-major axis 𝑎, and inclination
0 ă 𝑖 ă 90˝. The argument of perigee 𝜔 “ 0˝. Assume the Earth to be an ideal sphere rotating
at a constant angular velocity 𝑊 .

a) What are the satellite’s geographic latitude 𝜙p𝜈q and longitude 𝜆p𝜈q depending on the true
anomaly 𝜈?

b) Consider a satellite in a geosynchronous orbit (𝑇 “ 23h 56m 04s) with 𝑒 “ 0.30 and
𝑖 “ 1.00 rad. Calculate the ground track of the satellite (projection of the trajectory onto
the surface of the rotating Earth) and draw it. For convenience, use the answer sheet with
table and graph grid.

Hint:
ż

𝑑𝑥

p1 ` 𝑎 cos𝑥q2
“

2 arctan
´b

1´𝑎
1`𝑎

¨ tan 𝑥
2

¯

p1 ´ 𝑎2q3{2
´

𝑎 sin𝑥

p1 ´ 𝑎2qp1 ` 𝑎 cos𝑥q
` const.

Solution:

a) Let the origin point be the ascending node of the satellite’s orbit — in this problem
it coincides with perigee (𝜔 “ 0˝). For the respective spherical triangle:

T, 𝜋

𝑆

𝑆K𝑖
𝜆

𝜈 𝜙

sin𝜙

sin 𝑖
“

sin 𝜈

sin 90˝
ñ sin𝜙 “ sin 𝑖 sin 𝜈,

cos 𝑖 “
tan𝜆

tan 𝜈
ñ tan𝜆 “ cos 𝑖 tan 𝜈.

Taking into account the rotation of the Earth, we may put down the geographical coordinates
of the satellite:

𝜙1
“ 𝜙 “ arcsinpsin 𝑖 sin 𝜈q,

𝜆1
“ 𝜆 ´ 𝑊

𝑡
ż

0

𝑑𝑡. (3)



Ω𝒲𝒜𝒪‚ 2023 ˛ Theoretical Round ˛ Solutions Page 19 of 22

Due to rotational symmetry, the longitude of the satellite is determined up to a shift
by an arbitrary constant value.

The angular momentum of the satellite is conserved,

𝑙 “
𝑑𝜈

𝑑𝑡
𝑟2 “

a

𝐺M‘ 𝑎p1 ´ 𝑒2q “ const.

At the same time, the geocentric distance of the satellite depends on its true anomaly:

𝑟 “
𝑎p1 ´ 𝑒2q

1 ` 𝑒 cos 𝜈
.

Therefore,

𝑑𝑡 “
𝑟2 𝑑𝜈

a

𝐺M‘ 𝑎p1 ´ 𝑒2q
“

d

𝑎3p1 ´ 𝑒2q3

𝐺𝑀‘

𝑑𝜈

p1 ` 𝑒 cos 𝜈q2
.

Next, we can replace the integration variable in (3):

𝜆1
“ 𝜆 ´ 𝑊

d

𝑎3p1 ´ 𝑒2q3

𝐺𝑀‘

𝜈
ż

0

𝑑𝜈

p1 ` 𝑒 cos 𝜈q2
“

“ 𝜆 ´ 𝑊

d

𝑎3

𝐺𝑀‘

p1 ´ 𝑒2q3{2

»

–

2 arctan
´b

1´𝑒
1`𝑒

¨ tan 𝜈
2

¯

p1 ´ 𝑒2q3{2
´

𝑒 sin 𝜈

p1 ´ 𝑒2qp1 ` 𝑒 cos 𝜈q

fi

fl “

“ arctanpcos 𝑖 tan 𝜈q ´ 𝑊

d

𝑎3

𝐺𝑀‘

«

2 arctan

˜

c

1 ´ 𝑒

1 ` 𝑒
¨ tan

𝜈

2

¸

´
𝑒 sin 𝜈

?
1 ´ 𝑒2

1 ` 𝑒 cos 𝜈

ff

.

b) For geosynchronous orbit
2𝜋

𝑇
“ 𝑊 “

c

𝐺M‘

𝑎3
,

so we can simplify the expression above a bit:

𝜆1
“ arctanpcos 𝑖 tan 𝜈q `

𝑒 sin 𝜈
?
1 ´ 𝑒2

1 ` 𝑒 cos 𝜈
´ 2 arctan

˜

c

1 ´ 𝑒

1 ` 𝑒
¨ tan

𝜈

2

¸

.

Thoughts on plotting. It is pretty obvious that the relative motion of the satellite is periodical
and the track is closed. To plot the graph, we have to calculate 𝜙1 and 𝜆1 values for 𝜈 in range
from ´𝜋 to 𝜋. In fact, the work can be simplified by noting that

𝜙1
p´𝜈q “ ´𝜙p𝜈q, 𝜆1

p´𝜈q “ ´𝜆1
p𝜈q,

so it is enough to probe the range of 𝜈 from 0 to 𝜋, and then mirror the results.
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Also, note that arctanp#tan 𝜈q is ambiguous. 𝜆1 follows the motion of the satellite, therefore
arctan should be re-defined to become a continuous function for 𝜈 P r0; 𝜋q:

arctanpcos 𝑖 tan 𝜈q :“

$

&

%

arctanpcos 𝑖 tan 𝜈q, 𝜈 ď 𝜋{2,

arctanpcos 𝑖 tan 𝜈q ` 𝜋, 𝜈 ą 𝜋{2.

Here arctan is “conventional” inverse trigonometric function ranged from ´𝜋{2 to 𝜋{2. Of course,
arctanp`8q :“ 𝜋{2. Such a trick does not affect the parts of the expression that came along
with that remarkable integral, since 𝜈{2 appears there as an argument.

For calculations, it is convenient to substitute the values of 𝑒 and 𝑖 and regroup:

𝜆1
p𝜈q «

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

arctanp0.54 tan 𝜈q `
0.286 ¨ sin 𝜈

1 ` 0.3 cos 𝜈
´ 2 arctan

`

0.734 tan 𝜈
2

˘

, 𝜈 P r0; 𝜋{2q,

arctanp0.54 tan 𝜈q ` 3.142 `
0.286 ¨ sin 𝜈

1 ` 0.3 cos 𝜈
´ 2 arctan

`

0.734 tan 𝜈
2

˘

, 𝜈 P p𝜋{2; 𝜋q,

´𝜆1p´𝜈q, 𝜈 P p´𝜋; 0q

zt´𝜋{2u.

Finally, here is the plot we need:
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Marking Scheme:

• Expression for latitude 𝜙 — 3 pt.

• Expression for longitude 𝜆 — 3 pt.

• Angular momentum conservation — 3 pt.

• Accounting the rotation of the Earth, like (3) — 3 pt.

• Expression for longitude 𝜆1 taking into account rotation — 3 pt.

• Angular velocity of a geosynchronous satellite — 2 pt.

• Plot of the ground track — 3 pt.
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Constants

Universal

Speed of light 𝑐 “ 3.00 ¨ 108 m{s

Planck constant ℎ “ 6.63 ¨ 10´34 J ¨ s

Hubble constant 𝐻0 “ 70 pkm{sq{Mpc

Astronomical unit 1 au “ 149.6 ¨ 106 km

Parsec 1 pc “ 206 265 au

Earth

Radius 𝑅‘ “ 6371 km

Obliquity 𝜀 “ 23.4˝

Surface gravity 𝑔 “ 9.81 m{s2

Orbital period 𝑇‘ “ 365.26d

Orbital eccentricity 𝑒‘ “ 0.0167

Moon

Radius 𝑅K “ 1737 km

Orbital period 𝑇K “ 27.32d

Orbital inclination 𝑖K “ 5.1˝

Sun

Radius 𝑅d “ 6.96 ¨ 105 km

Absolute magnitude 𝑀d “ 4.74m (bol.)

Effective temperature 𝑇d “ 5.8 ¨ 103 K

Luminosity 𝐿d “ 3.828 ¨ 1026 W

Emission constants

Stefan–Boltzmann 𝜎 “ 5.67 ¨ 10´8

pW{m2q{K4

Wien’s displacement 𝑏 “ 2898 µm ¨ K

UBV system Mean wavelengths

U band 𝜆𝑈 “ 364 nm

B band 𝜆𝐵 “ 442 nm

V band 𝜆𝑉 “ 540 nm

Hydrogen spectrum

Lyman L𝛼 𝜆𝐿𝛼 “ 1215.7 Å

Balmer H𝛼 𝜆𝐻𝛼 “ 6562.8 Å


