

Тренерский штаб сборной команды Российской Федерации на Международной олимпиаде по астрономии и астрофизике

Учебно-тренировочные сборы по астрономии и астрофизике

Практический тест

16. Мазерные источники

В таблице ниже приводится зависимость круговой скорости движения мазерных источников в плоскости Галактики от галактоосевого расстояния. В рамках приближения максимального диска (считая, что основная масса Галактики заключена в диске) оцените массу диска Галактики. В качестве модельного потенциала диска можно взять потенциал Кузмина:

$$\Phi = -\frac{GM}{\sqrt{R^2 + (a+|z|)^2}},$$

где M — полная масса диска, a — масштабный параметр (4.2 кпк), R — расстояние до оси Галактики, z — расстояние от плоскости симметрии диска.

<i>R</i> , кпк	$(v \pm \sigma_v)$ км/с
4.54	254.5 ± 6.0
4.75	258.6 ± 3.7
5.65	246.3 ± 6.1
6.11	254.2 ± 3.1
6.78	258.6 ± 3.7
7.16	259.2 ± 3.1
7.50	254.8 ± 5.0
7.72	253.5 ± 5.1
7.90	250.7 ± 5.0
8.20	251.7 ± 9.8

17. Планетарные туманности

На обороте листа приводится таблица, содержащая данные из каталога планетарных туманностей (ПТ). В заголовке таблицы введены следующие обозначения:

- l галактическая долгота;
- b галактическая широта;
- D гелиоцентрическое расстояние;
- (U, V, W) пространственные компоненты скорости туманностей в галактоцентрической системе координат ГСК (X, Y, Z).

ГСК является правой системой координат, в которой Солнце имеет координаты (-8, 0, 0) кпк. Ось Z направлена к северному полюсу Галактики.

Задание:

- а. Постройте гистограмму распределения планетарных туманностей по модулю Z: количество ПТ в пределах от 0 до 50 пк, от 50 до 100 пк и т. д.
- b. По имеющимся данным постройте кривую вращения Галактики в плоскости XY: зависимость азимутальной скорости в плоскости XY объектов от их расстояния до центра в плоскости XY.
- с. Постройте диаграмму Тумре. По горизонтальной оси указывается компонента скорости V относительно Солнца, по вертикальной оси перпендикулярная компоненте V величина скорости относительно Солнца. Учтите, что Солнце движется вокруг центра Галактики со скоростью $V_{\odot} = 230$ км/с (в плоскости XY), а его пекулярная скорость имеет компоненты (10.0, 5.25, 7.17) км/с.

- d. На основании диаграммы Тумре определите принадлежность каждой ПТ к различным составляющим Галактики:
 - тонкий диск, если полная локальная скорость < 50 км/с;
 - толстый диск, если от 50 км/с до 200 км/с;
 - гало, если > 200 км/с.
- е. На гистограмме пункта (а) отметьте долю ПТ, относящихся к толстому диску.

Обозначение	l, °	b, °	D, пк	U, км/с	<i>V</i> , км/с	<i>W</i> , км/с
A 21	205.1	14.2	539	-5.5	189.5	9.1
A 31	219.1	31.3	610	-34.6	167.8	-24.7
A 35	303.6	40	149	-25.7	200.2	-4.4
A 36	318.5	41.5	359	46.3	225	31.8
A 71	85	4.5	2800	-99.1	237.4	-128.1
A 74	72.7	-17.2	750	9.4	243.9	3.5
A 78	81.3	-14.9	700	13.6	243.1	9.5
DHW 5	111.1	11.6	343	59.9	207	-12
EGB 6	221.6	46.4	525	-12.2	254.5	-1.1
HFG 1	136.4	5.6	409	19.2	194.9	5.2
IC 4593	25.3	40.8	971	2.6	220.6	50.9
IW 1	149.7	-3.4	456	-7.9	191.5	7.3
K 2-2	204.2	4.7	904	-0.6	171.5	-35.1
M2-40	24.1	3.9	2016	118.8	198.8	17.8
NGC 1360	220.4	-53.9	520	-63.7	252.6	-16.5
NGC 246	118.9	-74.7	448	60.5	223.5	47.8
NGC 3587	148.5	57.1	331	11.5	241.5	9.7
NGC 40	120	9.9	873	57.4	223.8	31.4
NGC 6629	9.4	-5.1	1838	26.5	226.9	29.4
NGC 6751	29.2	-5.9	1621	13.8	148.6	54.1
NGC 6781	41.8	-3	1267	5.3	241.1	61.8
NGC 6826	83.6	12.8	1364	96.7	202.8	34.4
NGC 6853	60.8	-3.7	421	-36.9	202.2	-8.9
NGC 6891	54.2	-12.1	821	35.5	254	-16.3
NGC 7094	66.8	-28.2	2107	8.6	78.1	-32
NGC 7293	36.2	-57.1	215	-30.9	205.2	11.8
PG 1034+001	247.6	47.8	11	-86.7	195.5	17.5
PW 1	158.9	17.9	353	-20.8	179.9	26.9
S 174	120.2	18.4	387	50.9	246.1	33.5
S 176	120.3	-5.4	491	35.6	203.9	68.7
S 216	158.5	0.5	128	-14.6	218.8	12.6
S 68	30.7	6.3	550	81.5	94.3	-8.4
Tc 1	345.2	-8.8	716	-80.7	212.1	8.5
Ton 320	191.4	33.1	465	-21.5	191.6	11.5

18. Поляризация астероидов

Отражённый от астероидов солнечный свет обычно частично линейно поляризован. Пусть I_{\perp} — интенсивность компоненты, поляризованной перпендикулярно плоскости Солнце – астероид – Земля, а I_{\parallel} — интенсивность компоненты, поляризованной параллельно этой плоскости. Из наблюдений можно определить параметр

$$P=\frac{I_{\perp}-I_{\parallel}}{I_{\perp}+I_{\parallel}},$$

который измеряют в процентах: он лежит между -100% и 100%.

Известно, что величина P сильно зависит от фазового угла астероида φ . Эту зависимость часто приближают эмпирической формулой

$$P(\varphi) \approx A \left[\exp \left(\frac{\varphi}{B} \right) - 1 \right] + C\varphi,$$

где A, B и C — неизвестные параметры.

У функции $P(\varphi)$ обычно есть один минимум в точке φ_{\min} и один корень в точке φ_0 . Обозначим значение в минимуме $P(\varphi_{\min})$ через P_{\min} . Существуют эмпирические формулы для альбедо астероида α через P_{\min} и через производную h функции $P(\varphi)$ в точке φ_0 :

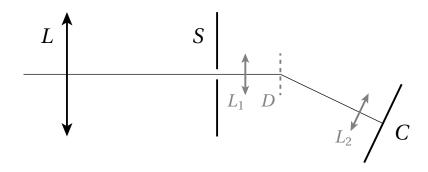
(i)
$$\lg \alpha = -1.331 \lg |P_{\min}[\%]| - 0.882;$$

(ii)
$$\lg \alpha = -1.016 \lg h \; [\%/^{\circ}] - 1.719.$$

В таблице справа приведены данные о фазовых углах, соответствующим им значениям параметра P для астероида Лютеция.

1.3	-0.4	0.02
2.05	-0.64	0.06
2.43	-0.72	0.07
4.5	-1.09	0.04
5.95	-1.19	0.08
7.5	-1.34	0.05
8.75	-1.36	0.09
10.1	-1.12	0.02
13.1	-1.29	0.02
14.8	-1.25	0.02
16.47	-1.02	0.07
17.38	-0.72	0.07
18.8	-0.56	0.07
20.3	-0.46	0.07
22.47	-0.26	0.2
22.69	-0.31	0.24
26.8	0.21	0.02
27.79	0.66	0.2
27.9	0.52	0.05
27.9	0.7	0.06
27.9	0.76	0.07
28.32	0.71	0.13
29.12	0.77	0.12

 φ , $^{\circ}$


 $(P \pm \Delta P)$ %

Задание:

- а. Нанесите точки на график $P(\varphi)$.
- b. Определите альбедо двумя способами, описанными выше.
- с. Оцените ошибки ваших результатов.
- d. Согласуются ли полученные вами результаты?

19. Привет из прошлого

При прохождении света через оптическое стекло или другие оптические материалы наблюдается дисперсия. Это явление заключается в том, что показатель преломления среды отличается для лучей света различных длин волн: более короткие волны преломляются сильнее. Поэтому единого фокусного расстояния у линзы не существует, у луча каждой длины волны фокус свой. Возникающую в результате аберрацию оптической системы называют хроматической.

Оптическая установка состоит из объективной линзы L и спектрографической системы низкого разрешения (экран S с длинной и узкой щелью, линзы L_1 и L_2 , дифракционная решётка D, ПЗС-матрица C). В данной задаче рассматривается хроматическая аберрация этой установки; иными аберрациями в данной системе можно пренебречь.

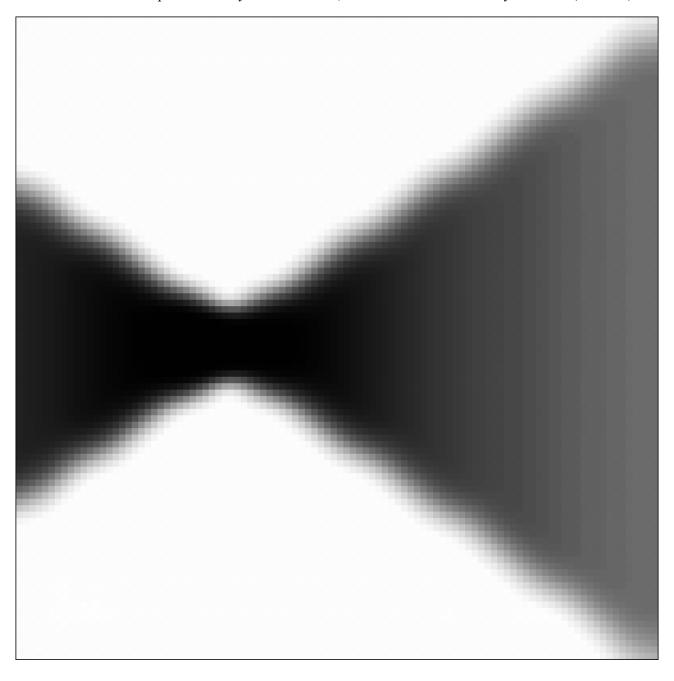
Расстояние между линзой и экраном соответствует фокусному расстоянию F_0 объектива для света с длиной волны $\lambda_0=520$ нм, при которой показатель преломления стекла линзы $n_0=1.520$.

- а. На описанной установке исследуется удалённый монохроматический источник с $\lambda \neq \lambda_0$, расположенный на оптической оси. Как выглядит создаваемая линзой картина на экране? Каково распределение интенсивности в этой картине?
- b. Как зависит вид данной картины от размера объективной линзы?

В дальнейшем будем считать, что на оптической оси установки расположен удалённый абсолютно чёрный эталонный источник с эффективной температурой $T=7200~{\rm K}.$

с. Как выглядит создаваемая линзой картина на экране в таком случае?

Щель экрана S много у́же рассмотренной вами картины. Полученное *на матрице* изображение (на отдельном листе) имеет две перпендикулярные оси: пространственную ось R, соответствующую координате точки на щели, и волновую Λ , соответствующую длине волны луча, попавшего в эту точку.


d. Опишите, как расположены оси R и Λ на приведённом изображении.

Рассмотрим простейшую зависимость показателя преломления от длины волны — линейную:

$$n(\lambda) = n_0 + k(\lambda - \lambda_0).$$

е. Найдите коэффициент k в рамках предложенной модели, если известно, что масштаб пространственной оси $\mu_R=22.0\,$ µм/см, волновой оси $-\mu_\lambda=6.9\,$ нм/см. Диаметр объектива $w=20.0\,$ мм.

К задаче 19. Изображение, полученное с помощью описанной оптической установки (негатив)

