
Ω𝒲𝒜𝒪‚ 2024 ˛ Practical Round ˛ Solutions Page 1 of 19

1 Scattering of Stones

There are various spectral types of asteroids. Multiband photometry data can be used

to determine the type of a particular asteroid. The article by Choi et al. (2023) provides

photometric data (𝑔, 𝑟, 𝑖, 𝑧) for several thousand asteroids, as well as describes a method

for determining their types. The catalog of photometric data is provided in a separate table

ast.dat. The description of the columns is indicated in the file itself.

We will use a simplified version of the method. First of all, the standardized magnitudes

are transformed to the reflectances in magnitude by subtracting the solar colors:

p𝑔1
´ 𝑟1

q “ p𝑔 ´ 𝑟q ´ p𝑔 ´ 𝑟qd , p𝑔 ´ 𝑟qd “ 0.61;

p𝑟1
´ 𝑖1

q “ p𝑟 ´ 𝑖q ´ p𝑟 ´ 𝑖qd , p𝑟 ´ 𝑖qd “ 0.35;

p𝑖1
´ 𝑧1

q “ p𝑖 ´ 𝑧q ´ p𝑖 ´ 𝑧qd , p𝑖 ´ 𝑧qd “ 0.16.

Next, the coefficient 𝑎 of least-squares linear regression is estimated:

p𝑟1
´ 𝑖1

q “ 𝑎 ¨ p𝑔1
´ 𝑟1

q ` 𝑏.

We assume that the errors in both color indexes are distributed according to the same law, so

we use the simple estimation — Deming linear regression:

p𝑔1 ´ 𝑟1q “
1

𝑛

𝑛
ÿ

𝑗“1

p𝑔1
´ 𝑟1

q𝑗 , p𝑟1 ´ 𝑖1q “
1

𝑛

𝑛
ÿ

𝑗“1

p𝑟1
´ 𝑖1

q𝑗 ;

𝑠𝑔1´𝑟1 “
1

𝑛

𝑛
ÿ

𝑗“1

`

p𝑔1
´ 𝑟1

q𝑗 ´ p𝑔1 ´ 𝑟1q
˘2
, 𝑠𝑟1´𝑖1 “

1

𝑛

𝑛
ÿ

𝑗“1

`

p𝑟1
´ 𝑖1

q𝑗 ´ p𝑟1 ´ 𝑖1q
˘2
;

𝑠𝑔1´𝑟1,𝑟1´𝑖1 “
1

𝑛

𝑛
ÿ

𝑗“1

`

p𝑔1
´ 𝑟1

q𝑗 ´ p𝑔1 ´ 𝑟1q
˘`

p𝑟1
´ 𝑖1

q𝑗 ´ p𝑟1 ´ 𝑖1q
˘

;

𝑎 “

𝑠𝑟1´𝑖1 ´ 𝑠𝑔1´𝑟1 `

b

p𝑠𝑟1´𝑖1 ´ 𝑠𝑔1´𝑟1q2 ` 4𝑠2𝑔1´𝑟1,𝑟1´𝑖1

2𝑠𝑔1´𝑟1,𝑟1´𝑖1

.

Further, the so-called principal component (PC) is estimated for each asteroid. For the 𝑗-th

asteroid

PC𝑗 “ p𝑔1
´ 𝑟1

q𝑗 cos 𝜃 ` p𝑟1
´ 𝑖1

q𝑗 sin 𝜃, 𝜃 ” arctan 𝑎.

Based on the values of PC and p𝑖1 ´ 𝑧1q, the spectral types of asteroids can be approximately

determined. The taxonomy boundaries are given in Table 1 below.

We will only work with asteroids whose magnitude uncertainties are less than

or equal to 0.05 in all photometric bands.
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a) Plot the dependence p𝑟1 ´ 𝑖1q on p𝑔1 ´ 𝑟1q for suitable asteroids. How many objects are

on the graph?

b) Determine the coefficient 𝑎 of Deming linear regression in the p𝑔1 ´𝑟1q versus p𝑟1 ´ 𝑖1q color

plane.

c) Plot the dependence p𝑖1 ´ 𝑧1q on PC for the same asteroids.

d) What spectral type does asteroid 8 Flora belong to?

e) How many asteroids belong to each type listed in the table?

Table 1: Parametric boundaries for different spectral types of asteroids

Type Boundaries

L&D
´0.195 ď PC ă 0.025
´0.150 ď p𝑖1 ´ 𝑧1q ă 0.040

S
´0.195 ď PC ă 0.025
´0.320 ď p𝑖1 ´ 𝑧1q ă ´0.150

V
´0.195 ď PC ă 0.025
´0.610 ď p𝑖1 ´ 𝑧1q ă ´0.320

C
PC ě ´0.395
p𝑖1 ´ 𝑧1q ` 2.778PC ă ´0.864
´0.210 ď p𝑖1 ´ 𝑧1q ă 0.040

X
PC ă ´0.195
p𝑖1 ´ 𝑧1q ` 2.778PC ě ´0.864
´0.210 ď p𝑖1 ´ 𝑧1q ă 0.040

Solution:

a) The original catalog lists 6793 asteroids. We leave only objects with the magnitude

uncertainties less than or equal to 0.05𝑚 in all photometric bands, as prescribed. The filtered

catalog contains 𝑛 “ 3504 suitable objects.

The dependence of p𝑟1 ´ 𝑖1q on p𝑔1 ´ 𝑟1q is shown in Figure 1.

b) First, we list the values of all calculated quantities needed for estimating the coefficient 𝑎.

p𝑔1 ´ 𝑟1q “
1

3504

3504
ÿ

𝑗“1

p𝑔1
´ 𝑟1

q𝑗 “ ´0.100;

p𝑟1 ´ 𝑖1q “
1

3504

3504
ÿ

𝑗“1

p𝑟1
´ 𝑖1

q𝑗 “ ´0.177;

𝑠𝑔1´𝑟1 “
1

3504

3504
ÿ

𝑗“1

`

p𝑔1
´ 𝑟1

q𝑗 ` 0.100
˘2

“ 9.36 ¨ 10´3;
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𝑠𝑟1´𝑖1 “
1

3504

3504
ÿ

𝑗“1

`

p𝑟1
´ 𝑖1

q𝑗 ` 0.177
˘2

“ 3.99 ¨ 10´3;

𝑠𝑔1´𝑟1,𝑟1´𝑖1 “
1

3504

3504
ÿ

𝑗“1

`

p𝑔1
´ 𝑟1

q𝑗 ` 0.100
˘`

p𝑟1
´ 𝑖1

q𝑗 ` 0.177
˘

“ 2.56 ¨ 10´3.

Next, we calculate an estimate of the angular regression coefficient

𝑎 “
3.99 ´ 9.36 `

a

p3.99 ´ 9.36q2 ` 4 ¨ p2.56q2

2 ¨ 2.56
“ 0.400;

𝜃 “ arctanp0.400q “ 21.8˝.

Note that the simple least squares method, assuming errors in only one of the coordinates,

leads to a significantly different result and is not applicable for this problem.

c) Using the value of Deming regression angle 𝜃 obtained above, we calculate the principal

component for each asteroid:

PC𝑗 “ cos 21.8˝
¨ p𝑔1

´ 𝑟1
q𝑗 ` sin 21.8˝

¨ p𝑟1
´ 𝑖1

q𝑗 “ 0.928p𝑔1
´ 𝑟1

q𝑗 ` 0.371p𝑟1
´ 𝑖1

q𝑗 .

The dependence of p𝑖1 ´ 𝑧1q on PC is shown in Figure 2.

d) For 8 Flora p𝑖1 ´𝑧1q “ ´0.19, PC “ 2.2 ¨10´3. This asteroid belongs to S-type (silicaceous).

e) Due to rounding errors in the previous stages, the number of asteroids may slightly differ

from the one shown in the table.

Type L&D S V C X Other

𝑁 606 1439 207 582 401 269

% 17 41 6 17 11 8

The spectral types in question approximately correspond to SMASS II taxonomic system. Note that

in the filtered catalog, the most numerous were the S-type (silicaceous) asteroids; approximately 17%

of the real asteroids are of this type. In reality, among all known asteroids, the most numerous objects

(about 77%) are the C-type asteroids (carbonaceous), but they comprise only 17% in the catalog

in this problem. The V-type (volcanic-type or vestoids) asteroids were the least common in our sample,

in reality they also comprise approximately 6% of the main-belt asteroids. The X-group collects

together several types of asteroids with similar spectra, namely metallic asteroids, ones with high

albedo and asteroids with red spectra. L&D-type correspond to the asteroids with very steep red

slope in spectra.
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Figure 1: p𝑟1 ´ 𝑖1q on p𝑔1 ´ 𝑟1q: the most populated area
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Figure 2: p𝑖1 ´ 𝑧1q on PC: the most populated area
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Marking Scheme:

• Question (a)

1. p𝑔1 ´ 𝑟1; 𝑟1 ´ 𝑖1q plot — 2 pt.

2. 𝑛 “ 3504 — 3 pt.

or 𝑛 P r3500; 3510s — 2 pt., 𝑛 P r3300; 3700s — 1 pt.

• Question (b)

3. 𝑎 “ 0.40 — 5 pt.

For every deviation step of 0.01, 1 point is deducted, e. g. the answer 𝑎 “ 0.37

is worth 2 pt.

The score for this question cannot be negative.

4. Question (c): pPC; 𝑖1 ´ 𝑧1q plot — 3 pt.

5. Question (d): spectral type with justification — 2 pt.

6. Question (e): correct number for each spectral type — 1 pt. ˆ 5 “ 5 pt.
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2 Support Service

An analemma (from Ancient Greek αναληµµα – “support”) is a diagram showing the position

of the Sun in the sky as seen from a fixed location on the Earth at the same mean solar time,

as that position varies over the course of a year. It is directly related to the so-called equation

of time — the difference between mean and true solar time (that is, the difference between

the right ascensions of the true and mean Sun):

𝜂 “ 𝑡mean ´ 𝑡true “ 𝛼true ´ 𝛼mean.

This difference is due to two reasons: the tilt of the planet’s axis of rotation (obliquity)

and the eccentricity of its orbit.

Assume the planet pass perihelion at the moment 𝑡 “ 0. If the planet moved uniformly,

its position would be determined by the mean anomaly

𝑀p𝑡q “
2𝜋𝑡

𝑇
,

where 𝑇 is the orbital period of the planet.

The actual position of the planet in its orbit is determined by the true anomaly 𝜈.

The true anomaly 𝜈 is geometrically related to the eccentric anomaly 𝐸, which shows

the position of some imaginary point on the auxiliary circle (see Figure 3).

𝐸 𝑀 𝜈

orbit (ellipse)

auxiliary circle

𝑃𝐶

Figure 3: Geometric meaning and connection between different anomalies.

𝐶 is the center of the ellipse and auxiliary circle, 𝑃 is the pericenter of the orbit
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Please note that

tan
𝜈

2
“

c

1 ` 𝑒

1 ´ 𝑒
¨ tan

𝐸

2
,

where 𝑒 is the eccentricity of the planet’s orbit. Also, the mean and eccentric anomalies

(expressed in radians) are related by Kepler’s equation:

𝐸 ´ 𝑒 ¨ sin𝐸 “ 𝑀.

a) Plot the difference p𝜈 ´ 𝑀q as a function of time 𝑡 P r0; 𝑇 s for the orbits of the Earth

and Mars. For convenience, express p𝜈 ´ 𝑀q in “local” minutes: 1 solar day “ 24 hours,

1 hour “ 60 minutes.

Let 𝑥 be the ecliptic longitude of the Sun measured from the vernal equinox for the planet when

this planet is at perihelion. You can find the corresponding values in the Constants Table.

b) Express the “local” ecliptic longitude of the Sun 𝜆 in terms of 𝜈 and 𝑥.

Hour angles and right ascensions are measured along the celestial equator. Since the ecliptic

is inclined to the celestial equator by an angle of 𝜀, both of these parameters are related

to the ecliptic longitude nonlinearly. For example, for right ascension 𝛼 we have:

tan𝛼 “ tan𝜆 ¨ cos 𝜀.

c) Plot the difference p𝛼 ´ 𝜆q expressed in “local” minutes as a function of time 𝑡 P r0; 𝑇 s

for the orbits of the Earth and Mars.

The equation of time can be represented as the sum

𝜂p𝑡q “ p𝜈 ´ 𝑀q ` p𝛼 ´ 𝜆q.

d) Plot the equation of time 𝜂 expressed in “local” minutes as a function of time 𝑡 P r0; 𝑇 s

for the orbits of the Earth and Mars.

The declination of the Sun 𝛿 can be expressed by the formula

sin 𝛿 “ sin𝜆 ¨ sin 𝜀.

e) Plot the analemma corresponding to mean noon for an observer at mid-latitudes of the

Northern Hemisphere of the Earth and Mars (north is up, west is to the right).

f) There are the analemmas of five imaginary planets in Figure 4. Determine the parameters

𝑒, 𝑥, and 𝜀 for each model. In case there are several possible answers, please provide any.
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Figure 4: Analemmas of five imaginary planets
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Solution:

a) It is convenient to use the eccentric anomaly 𝐸 as a parameter. For 𝐸 “ 0 to 2𝜋 we can

tabulate calculations in radians:

𝑀 “ 𝐸 ´ 𝑒 ¨ sin𝐸, 𝑡 “
𝑀

2𝜋
¨ 𝑇 ;

𝜈 “ 2 arctan

˜

c

1 ` 𝑒

1 ´ 𝑒
¨ tan

𝐸

2

¸

` 2𝜋𝑘,

where 𝑘 “ 0 if 𝐸 ď 𝜋, and 𝑘 “ 1 if 𝐸 ą 𝜋.

To convert the obtained results from radians to “local” minutes we have to multiply them

by factor 24ˆ60
2𝜋

“ 720
𝜋
.

b) Parameters 𝜆, 𝜈, and 𝑥 are measured along the “local” ecliptic in the same direction.

Also ∆𝜆 “ ∆𝜈. When the planet is at the perihelion, 𝜆 “ 𝑥 and 𝜈 “ 0, so

𝜆 “ 𝜈 ` 𝑥.

c) The right ascension

𝛼 “ arctanptan𝜆 ¨ cos 𝜀q ` 𝜋𝑛,

where integer 𝑛 is chosen so that 0 ď 𝛼 ă 𝜋 when 0 ď 𝜆 ă 𝜋, and 𝜋 ď 𝛼 ă 2𝜋 when 𝜋 ď 𝜆 ă 2𝜋.

Please do not forget to convert the results to the local minutes!

d–e) We have everything we need to plot the following graph:

$

&

%

𝜂 “ p𝜈 ´ 𝑀q ` p𝛼 ´ 𝜆q;

𝛿 “ arcsinpsin𝜆 ¨ sin 𝜀q.

See Figures 5 and 6.

f) Varying parameters 𝑒, 𝑥, and 𝜀, we can adjust the calculated analemmas to the model ones.

Note that the maximum Sun declination for each planet is 𝜀. A symmetric figure means that 𝑥

is divisible by 𝜋{2 “ 90˝.

The possible values of 𝑒, 𝑥, and 𝜀 for each model planet are shown in the table below:

Planet 1 2 3 4 5

𝑒 0.3 0.9 0.9 0.9 0.1

𝑥, ˝ 90 90 0 305 90

𝜀, ˝ 30 20 10 20 40



Ω𝒲𝒜𝒪‚ 2024 ˛ Practical Round ˛ Solutions Page 10 of 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

´10

0

10

𝑡{𝑇

“L
o
ca
l”

m
in
u
te
s

The Earth

𝜈 ´ 𝑀
𝛼 ´ 𝜆
𝜂

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

´40

´20

0

20

40

𝑡{𝑇

“L
o
ca
l”

m
in
u
te
s

Mars

𝜈 ´ 𝑀
𝛼 ´ 𝜆
𝜂

Figure 5: Composition of the equation of time for the Earth and Mars
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Figure 6: Calculated analemmas for the Earth and Mars
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Marking Scheme:

1. Question (a) — 3 pt.

2. Question (b) — 1 pt.

3. Question (c) — 3 pt.

4. Question (d) — 2 pt.

5. Question (e) — 4 pt.

6. Question (f)

• 𝜀: method — 1 pt. + values — 0.4 pt. ˆ 5 “ 2 pt.

• 𝑥: method — 1 pt. + values — 0.2 pt. ˆ 5 “ 1 pt.

• 𝑒: method — 1 pt. + values — 0.2 pt. ˆ 5 “ 1 pt.

Note. In the original formulation of the problem, the notation 𝑥 could be understood ambiguously.

Using the well-known ideas about the Earth’s orbit (the Earth passes the perihelion on January 2–5)

one could easily guess how to interpret this designation correctly. However, solutions with

an “inverted” ecliptic longitude of the pericenter are assessed without penalty.
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3 Ephemeric Quest

The file ephem.dat contains ephemerides of some small body of the Solar system. The first

and second columns of the file contain the date and universal time of the observation, followed

by the right ascension (in hours, minutes and seconds) and declination (in degrees, minutes

and seconds) for the observer on the Earth (geocentric location):

Date Time Right ascension Declination

2023-Mar-18 00:00:00 23h 59m 03.88s 0˝ 441 46.92

2023-Mar-19 00:00:00 0h 0m 41.94s 0˝ 551 34.02

. . . . . . . . . . . .

The absolute magnitude of the object is 𝐻 “ 18.51m. The orbit of the object is circular,

the inclination is small.

a) Determine whether the object’s orbit lies inside or outside the Earth’s orbit.

b) Estimate the radius of the object’s orbit.

c) Estimate the minimal time interval between two consecutive greatest elongations

or consecutive quadratures.

d) Determine the difference between the maximal and minimal apparent magnitudes

of the object for an observer on the Earth during one synodic period.

e) Plot the dependence of the apparent magnitude of the object on time for an observer

on the Earth during one synodic period.

Hint: for the Solar system objects, the absolute magnitude, commonly called 𝐻, is defined

as the apparent magnitude that the object would have if it were one astronomical unit (1.00 au)

from both the Sun and the observer, and in conditions of ideal solar opposition (the apparent

phase is 1.00).

Solution:

a) First of all, we plot the positions of an object in the sky in equatorial coordinates. Note

that the right ascensions of the object vary widely. Let us look at the area of the graph that

is mostly interesting for us, where we can see a loop of apparent retrograde motion (see Figure 7).

The color on the graph shows the number of the observation day, for convenience.

The center of the retrograde motion arc corresponds to the observations in the winter of 2023.

But the right ascensions of the object correspond to the summer zodiac constellations.

Consequently, the retrograde motion arc is observed in the vicinity of the opposition,

and the object is superior to the Earth.

b) There are several ways to determine the radius of an object’s orbit.
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Figure 7: The positions of an object on the celestial sphere observed from the Earth.
The equatorial coordinates in degrees are plotted along the axes. The color shows the number
of the day since the start of the observation

Method 1. Let us analyze the simplest one. We can determine the point of opposition

of the object and estimate the angular velocity of its movement across the sky.

Let 𝑎 be the radius of the object’s orbit, 𝑎‘ be the radius of the Earth’s orbit, 𝑉 be the orbital

velocity of the object, 𝑉‘ be the velocity of the Earth. The angular velocity of an object moving

across the sky in its opposition is

𝜔 “
𝑉‘ ´ 𝑉

𝑎 ´ 𝑎‘

.

Since the object’s orbit is circular, the velocity is inversely proportional to the square root

of the radius of the orbit:

𝜔 “

𝑉‘ ´ 𝑉‘ ¨

c

𝑎‘

𝑎

𝑎 ´ 𝑎‘

“
𝑉‘

𝑎
¨

1 ´

c

𝑎‘

𝑎

1 ´
𝑎‘

𝑎

“
𝑉‘

𝑎
¨

1

1 `

c

𝑎‘

𝑎

“
𝑉‘

𝑎 `
?
𝑎𝑎‘

.

Now we have the equation for the radius of the object’s orbit:

𝑎 `
?
𝑎𝑎‘ ´

𝑉‘

𝜔
“ 0.

The opposition occurs approximately on November 21. Let us determine how far the object

has moved in 4 days in the vicinity of this date. One can take a different time interval, so

the answers may be slightly different

19.11.2023: 𝛼1 “ 3h 55m 47.92s, 𝛿1 “ 22˝ 321 37.12,

23.11.2023: 𝛼2 “ 3h 51m 45.64s, 𝛿2 “ 22˝ 201 06.22.

The angle 𝜃 traversed by the object is estimated by Pythagorean theorem taking into

account the correction for small circles: 𝜃 «
a

p𝛿1 ´ 𝛿2q2 ` p𝛼1 ´ 𝛼2q
2 cos2 𝛿1 « 0.956˝, or

by the spherical law of cosines: 𝜃 “ arccos psin 𝛿1 sin 𝛿2 ` cos 𝛿1 cos 𝛿2 cosp𝛼1 ´ 𝛼2qq « 0.956˝.
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So an estimation of the angular velocity is

𝜔 “
0.956˝

4 d
“ 0.239˝

{d.

Substituting this value into the equation above, we obtain

𝑉‘

𝜔
“

𝑉‘

𝜔‘

¨
𝜔‘

𝜔
“ 𝑎‘ ¨

360˝

𝜔𝑇‘

“ 𝑎‘ ˆ
360˝

0.239˝{𝑑 ˆ 365.26d
“ 4.124𝑎‘

ùñ
𝑎

𝑎‘

`

c

𝑎

𝑎‘

“ 4.124.

This equation can be solved using iterative method:

𝑎𝑛`1

𝑎‘

“ 4.124 ´

c

𝑎𝑛
𝑎‘

, 𝑎0 “ 1 au,

that quickly converges to 𝑎 “ 2.57 au or 3.8 ¨1011 m. The data table corresponds to the asteroid

2021 GK139. The real value for the semi-major axis of its orbit is 2.595 au.

Method 2. A more complex method requires the use of the information about the stationary

points. Let us determine the relation between the radius of the object’s orbit and the length

of the arc of its retrograde motion.

We introduce a coordinate system centered on the Earth as shown in Figure 8. The coordinates

of the object in such a system are p𝑎 sin𝜆; 𝑎 cos𝜆 ´ 𝑎‘q. The relative velocity of the object

is p𝑉 cos𝜆 ´ 𝑉‘, ´𝑉 sin𝜆q.

At the stationary points, the observed relative velocity of the object is directed along the line

of sight. We can write the proportionality

𝑉 cos𝜆 ´ 𝑉‘

𝑎 sin𝜆
“

´𝑉 sin𝜆

𝑎 cos𝜆 ´ 𝑎‘

ùñ

a

𝑎‘{𝑎 ¨ cos𝜆 ´ 1

𝑎 sin𝜆
“

´
a

𝑎‘{𝑎 ¨ sin𝜆

𝑎 cos𝜆 ´ 𝑎‘

.

𝑎‘ 𝑎

𝜆

𝜃

�⃗�‘

�⃗�
𝑋

𝑌

Figure 8: Determining the positions of the stationary points
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If we measure 𝑎 in AU, we’ll get

?
𝑎 cos2 𝜆 ´

1
?
𝑎
cos𝜆 ´ 𝑎 cos𝜆 ` 1 “ ´

?
𝑎 sin2 𝜆 ùñ cos𝜆 “

?
𝑎 ` 1

𝑎 ` 1{
?
𝑎
.

Based on the track of an object on the celestial sphere, we determine the length of the retrograde

motion arc. The distance between the stationary points turns out to be about 14˝.

This value can be measured directly from the plot, taking into account the projection effect,

or estimated using the spherical law of cosines based on the coordinates of the stationary points.

The stationary points themselves correspond approximately to October 6, 2023 and January 9,

2024. During this time, due to the movement of the Earth in its orbit, the observer’s line

of sight will rotate 95˝, so the corresponding angle 𝜃 in Figure 8 equals to p95˝ ` 14˝q{2 « 54˝.

By the law of sines
sin 𝜃

𝑎
“

sinp𝜃 ´ 𝜆q

𝑎‘

.

We need to find both the radius 𝑎 and the angle 𝜆. It seems meaningful to determine the roots

numerically. For example, we use the bisection-like method on the segment r1.5; 10s au and

calculate 𝜆 from both the sine theorem (𝜆1) and the cos𝜆 estimate (𝜆2):

𝑎 1.5 10.0 5.0 3.0 2.5

𝜆1,
˝ 16.2 66.2 53.6 40.2 34.5

𝜆2,
˝ 21.4˝ 49.4 44.7 38.4 35.1

We can take the value of 2.5 au as a fair estimation.

Method 3 (sketch). Finally, one can simply convert the object’s coordinates to the ecliptic

system, calculate the ecliptic longitude of the Sun (for details see Problem 2) and the object’s

elongation at each point. Next, we will notice two points, for example, with zero elongation

(the conjunction of the object with the Sun). The time difference at these points corresponds

to the synodic period of the object. Then it is easy to determine the sidereal period, and then

the radius of the object’s orbit.

c) It was previously shown that the object is superior. Then the concept of the greatest

elongation is meaningless for it.

Since the time interval between quadratures is related to the value of the synodic period, let us

first estimate the synodic period using Kepler’s third law:

𝑆 “
𝑇 ¨ 𝑇‘

𝑇 ´ 𝑇‘

“
𝑎1.5 ¨ 𝑎1.5‘

𝑎1.5 ´ 𝑎1.5‘

“ 1.3 yr.

We should estimate the angle 𝜃 centered on the Sun between the direction to Earth

and the object in quadrature (see Figure 9): 𝜃 “ arccosp𝑎‘{𝑎q « 67˝.
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𝜃

𝜙
𝑎‘

𝑎

Figure 9: Geometry of the quadratures
of the object

𝑎‘
𝑎

𝑟

∆𝜆

Figure 10: Geometry for an arbitrary
configuration of the object

Then the minimal time interval between successive quadratures is ∆𝑇 “
2𝜃

360˝
¨ 𝑆 “ 0.49 yr.

d) Let us think about the moments when the minimal and maximal magnitudes are reached.

Note that the magnitude dependence on the observed phase is insignificant. The minimal phase

corresponds to the point of quadrature,

Φmin “
1 ` cos𝜙

2
“

1 ` cos arcsinp𝑎‘{𝑎q

2
« 0.96.

This value differs very slightly from 1, and within the accuracy of our calculations, we can

ignore the phase change.

The object’s orbit is circular, so the most significant factor is the difference in the distances

between the Earth and the object. The object becomes the faintest in its conjunction,

and the brightest in its opposition:

𝑚𝑜 ´ 𝑚𝑐 “ ´2.5 lg
𝐸𝑜

𝐸𝑐

“ ´2.5 lg
p𝑎 ´ 𝑎‘q´2

p𝑎 ` 𝑎‘q´2
“ 5 lg

𝑎 ´ 𝑎‘

𝑎 ` 𝑎‘

“ ´1.8m.

e) We have to express the dependence of the apparent magnitude on the distance 𝑟

to the object. The illuminance from the Sun is inversely proportional to the square

of the distance from the Sun to the object. Also, the illuminance created by an object

on the Earth is inversely proportional to the square of the distance from the object to the Earth.

We use Pogson’s law and write

𝑚p𝑟q ´ 𝐻 “ ´2.5 lg
𝑎2‘𝑎

2
‘

𝑟2𝑎2
“ 5 lg

𝑟𝑎

𝑎2‘
.
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If we express distances in astronomical units, the formula takes the form

𝑚p𝑟q “ 𝐻 ` 5 lg 𝑟𝑎.

Let 𝑡 “ 0 correspond to the moment of the opposition. At the time 𝑡, the difference between

the heliocentric longitudes of the Earth and the object is

∆𝜆 “
𝑡

𝑆
¨ 360˝.

The distance to the object is related to the ∆𝜆 with the law of cosines (see Figure 10):

𝑟 “

b

𝑎2‘ ` 𝑎2 ´ 2𝑎‘𝑎 cos∆𝜆.

In au, 𝑟 “
?
1 ` 𝑎2 ´ 2𝑎 cos∆𝜆. Finally, we obtain the dependence of the apparent magnitude

on the number of days since the opposition

𝑚p𝑡q “ 𝐻 ` 5 lgp𝑎
?
1 ` 𝑎2 ´ 2𝑎 cos∆𝜆q “

“ 𝐻 ` 5 lg 𝑎 ` 2.5 lg

ˆ

1 ` 𝑎2 ´ 2𝑎 ¨ cos

ˆ

𝑡

𝑆
¨ 360˝

˙˙

.

The graph of this dependence is shown in Figure 11.
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Figure 11: The object’s apparent magnitude on the number of days since the opposition
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Marking Scheme:

• Question (a)

1. Description of the method for determining the location of the object’s orbit — 2 pt.

2. The answer — 1 pt is given only if the description of the method is provided.

• Question (b)

3. Description of the method for determining the radius of the orbit, taking data from

the graph, data processing — 2 pt. + 1 pt. + 1 pt.

4. The answer — 1 pt is given only if the description and data processing are provided.

• Question (c)

5. Understanding possible configurations, choosing the necessary data — 1 pt.

6. Writing the correct formulae and the final expression — 1 pt. + 1 pt.

7. Answer — 1 pt.

• Question (d)

8. Understanding the necessary configurations, choosing the correct data — 1 pt.

9. Writing the correct formulae and the final expression — 1 pt. + 1 pt.

10. Answer — 1 pt.

• Question (e)

11. Dependence of the apparent magnitude on the date — 2 pt.

12. Calculation of values, plot — 1 pt. + 1 pt.
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Constants

Universal

Speed of light 𝑐 “ 3.00 ¨ 108 m{s

Planck constant ℎ “ 6.63 ¨ 10´34 J ¨ s

Boltzmann constant 𝑘𝐵 “ 1.38 ¨ 10´23 J{K

Gas constant R “ 8.314 J{pmol ¨ Kq

Proton mass 𝑚𝑝 “ 1.673 ¨ 10´27 kg

Astronomical

Astronomical unit 1 au “ 149.6 ¨ 106 km

Parsec 1 pc “ 206 265 au

Hubble constant 𝐻0 “ 70 pkm{sq{Mpc

Sun

Radius 𝑅d “ 6.96 ¨ 105 km

Mass Md “ 1.99 ¨ 1030 kg

Absolute magnitude 𝑀d “ 4.74m (bol.)

Effective temperature 𝑇d “ 5.8 ¨ 103 K

Luminosity 𝐿d “ 3.828 ¨ 1026 W

Earth

Radius 𝑅‘ “ 6371 km

Sidereal day 𝜏‘ “ 23h 56m 04s

Obliquity of ecliptic 𝜀‘ “ 23.437˝

Surface gravity 𝑔 “ 9.81 m{s2

Orbital period 𝑇‘ “ 365.26d

Orbital eccentricity 𝑒‘ “ 0.0167

𝑥‘ “ 283.3˝

Mars

Radius 𝑅𝑀 “ 3390 km

Sidereal day 𝜏𝑀 “ 24h 37m 23s

Obliquity (axial tilt) 𝜀𝑀 “ 25.192˝

Orbital semi-major axis 𝑎𝑀 “ 1.52 au

Orbital period 𝑇𝑀 “ 1.88 yr

Orbital eccentricity 𝑒𝑀 “ 0.0934

𝑥𝑀 “ 251˝


