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1 Celestial Pause

From opposition to the nearest stationary point, the apparent angular diameter of an asteroid

decreases by 10%. A stationary point is the point at which the asteroid’s apparent motion

reverses. The observer is located on the surface of the Earth. Assume the asteroid’s orbit

is circular and lies in the ecliptic plane.

a) Determine the radius of the asteroid’s orbit.

b) How much time passes between these two moments?

Solution:

a) A stationary point is a configuration in which the relative velocity of the observer and

the asteroid is directed along the line of sight, meaning there is no relative tangential component.

The stationary points are symmetric with respect to opposition.

Let 𝜆 denote the difference in the heliocentric longitudes of the Earth and the asteroid.

The distance between them is

𝐴𝐸 “
?
𝐸𝑆2 ` 𝐴𝑆2 ´ 2𝐸𝑆 ¨ 𝐴𝑆 cos𝜆 “

b

𝑎2𝐸 ` 𝑎2 ´ 2𝑎𝐸𝑎 cos𝜆.

Express the tangential components of velocity:

𝑣K𝐸 “ 𝑣𝐸 sinp=𝑆𝐸𝐴 ´ 90˝
q “ ´𝑣𝐸 cos=𝑆𝐸𝐴;

𝑣K𝐴 “ 𝑣𝐴 sinp90˝
´ =𝑆𝐴𝐸q “ 𝑣𝐴 cos=𝑆𝐴𝐸.
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Figure 1: On determining the position of the stationary point
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Apply the law of cosines to △𝑆𝐸𝐴:

𝑆𝐴2
“ 𝑆𝐸2

` 𝐴𝐸2
´ 2𝑆𝐸 ¨ 𝐴𝐸 cos=𝑆𝐸𝐴 ùñ cos=𝑆𝐸𝐴 “

𝑆𝐸2 ` 𝐴𝐸2 ´ 𝑆𝐴2

2𝑆𝐸 ¨ 𝐴𝐸
,

𝑆𝐸2
“ 𝑆𝐴2

` 𝐴𝐸2
´ 2𝑆𝐴 ¨ 𝐴𝐸 cos=𝑆𝐴𝐸 ùñ cos=𝑆𝐴𝐸 “

𝑆𝐴2 ` 𝐴𝐸2 ´ 𝑆𝐸2

2𝑆𝐴 ¨ 𝐴𝐸
;

cos=𝑆𝐸𝐴 “
𝑎𝐸 ´ 𝑎 cos𝜆

a

𝑎2𝐸 ` 𝑎2 ´ 2𝑎𝐸𝑎 cos𝜆
, cos=𝑆𝐴𝐸 “

𝑎 ´ 𝑎𝐸 cos𝜆
a

𝑎2𝐸 ` 𝑎2 ´ 2𝑎𝐸𝑎 cos𝜆
.

Assuming circular orbits, we equate the tangential components of the orbital velocities:

´

c

𝐺Md

𝑎𝐸
¨

𝑎𝐸 ´ 𝑎 cos𝜆
a

𝑎2𝐸 ` 𝑎2 ´ 2𝑎𝐸𝑎 cos𝜆
“

c

𝐺Md

𝑎
¨

𝑎 ´ 𝑎𝐸 cos𝜆
a

𝑎2𝐸 ` 𝑎2 ´ 2𝑎𝐸𝑎 cos𝜆
,

𝑎 cos𝜆 ´ 𝑎𝐸
?
𝑎𝐸

“
𝑎 ´ 𝑎𝐸 cos𝜆

?
𝑎

ùñ cos𝜆 “
𝑎

?
𝑎𝐸 ` 𝑎𝐸

?
𝑎

𝑎
?
𝑎 ` 𝑎𝐸

?
𝑎𝐸

.

The distance to the asteroid at opposition is 𝑟𝑜 “ 𝑎´ 𝑎𝐸. The distance at the stationary point

is derived using the geometrical relation involving cos𝜆. The ratio of the asteroid’s angular

sizes at these two points leads to the following equation:

p𝑎 ´ 𝑎𝐸q
2

“ 0.92
ˆ

𝑎2𝐸 ` 𝑎2 ´ 2𝑎𝐸𝑎 ¨
𝑎

?
𝑎𝐸 ` 𝑎𝐸

?
𝑎

𝑎
?
𝑎 ` 𝑎𝐸

?
𝑎𝐸

˙

.

Let us measure distances in au, so 𝑎𝐸 “ 1. The equation simplifies to:

𝑎2 ´ 2𝑎 ` 1 “ 0.81

ˆ

1 ` 𝑎2 ´ 2𝑎 ¨
𝑎 `

?
𝑎

𝑎
?
𝑎 ` 1

˙

ùñ 𝑎 “ 5.6 au.

b) Next, determine the time interval between opposition and the stationary point.

The difference in heliocentric longitudes at the stationary point is

𝜆 “ arccos
𝑎 `

?
𝑎

𝑎
?
𝑎 ` 1

“ 56˝.

The change in the difference of heliocentric longitudes is related to the synodic period 𝑆. Then,

the time interval is proportional to the difference in heliocentric longitudes:

𝑆 “
𝑇𝑇‘

𝑇 ´ 𝑇‘

“
𝑎1.5 ¨ 1

𝑎1.5 ´ 1
“ 1.08y,

∆𝑇 “ 𝑆 ¨
𝜆

360˝
“ 0.17y “ 61d.
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Marking Scheme:

• Question (a) Orbital radius

1. Geometric and kinematic relations for the stationary point — 5 pt.

2. Valid technique to solve the equation for the orbital radius — 5 pt.

3. Correct numerical result — 3 pt.

• Question (b) Time interval

1. Synodic period, difference in heliocentric longitudes at the stationary point — 5 pt.

2. Correct numerical result — 2 pt.
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2 Winter Ensemble

The Winter Triangle is an asterism formed

by Sirius, Procyon, and Betelgeuse. Their

equatorial coordinates are listed in the table.

Star Right Ascension Declination

Sirius 6h 45m ´16˝ 451

Procyon 7h 40m `05˝ 101

Betelgeuse 5h 56m `07˝ 241

a) Write down which star is labeled by each number.

b) On what fraction of the Earth’s surface are all three stars of the Winter Triangle

always above the horizon?

c) On what fraction of the Earth’s surface can all three stars be above the horizon

at the same time at least sometimes?

d) At what latitude can all three stars be at the same altitude at the same time?

Neglect atmospheric refraction.

Solution:

a) The stars in the figure can be identified in several ways. Betelgeuse (2) is located

in the constellation of Orion, whose distinct asterism is clearly visible in the picture. Sirius,

labeled number 3, is the brightest star in the night sky. Procyon is labeled number 1.

Celestial coordinates provide another method for orientation. The position of the Orion

constellation is well-known—the celestial equator passes through Orion’s belt. The star

number 3 (Sirius) has a negative declination, as it lies noticeably lower in the sky. The remaining

two stars can be distinguished by their right ascension. In the diagram, Procyon (1) is to the left

of Betelgeuse (2), consistent with right ascension increasing counterclockwise when viewing the

celestial sphere from the north.

b) The Winter Triangle asterism includes stars both above and below the celestial equator.

For a star to be circumpolar at a given location, its declination must share the sign

of the location’s latitude. Since the Winter Triangle contains stars with opposing declinations,

it is impossible for the entire asterism to be circumpolar simultaneously at any point

on the Earth. Therefore, the fraction of the Earth’s surface from which the entire Winter

Triangle is circumpolar is zero.

c) To determine the latitudes from which all stars in the asterism are visible (i.e., they all

rise above the horizon), we require that each star’s upper culmination altitude is non-negative:

ℎ “ 90˝ ´ |𝜙 ´ 𝛿| ě 0˝. Let us find the range of latitudes that satisfies this condition for both
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the northernmost and southernmost stars in the group:

$

&

%

90˝ ´ |𝜙 ´ 07˝ 241| ě 0˝,

90˝ ´ |𝜙 ` 16˝ 451| ě 0˝
ùñ ´82˝ 361

ď 𝜙 ď 73˝ 151.

We have so far determined the range of latitudes where all stars in the asterism are theoretically

visible (i.e., they each rise above the horizon at some point). However, we should verify that

they can be observed simultaneously.

At the northernmost latitude, we verify whether the other two stars are above the horizon

at the moment of Sirius’s upper culmination. This occurs when the local sidereal time equals

Sirius’s right ascension: 𝑠 “ 𝛼 “ 6h 45m.

At the same moment the hour angles of Betelgeuse and Procyon are

𝑡𝐵 “ 6h 45m ´ 5h 56m “ 49m “ 12.25˝,

𝑡𝑃 “ 6h 45m ´ 7h 40m “ ´55m “ ´13.75˝.

We then calculate the stars’ altitudes at these hour angles:

sinℎ𝐵 “ sin𝜙 sin 𝛿𝐵 ` cos𝜙 cos 𝛿𝐵 cos 𝑡𝐵,

sinℎ𝐵 “ sin 73˝ 151 sin 7˝ 241
` cos 73˝ 151 cos 7˝ 241 cos 12.25˝,

sinℎ𝐵 “ 0.40 ùñ ℎ𝐵 “ 23.7˝
ą 0˝;

sinℎ𝑃 “ sin𝜙 sin 𝛿𝑃 ` cos𝜙 cos 𝛿𝑃 cos 𝑡𝑃 ,

sinℎ𝑃 “ sin 73˝ 151 sin 5˝ 101
` cos 73˝ 151 cos 5˝ 101 cos p´13.75˝

q ,

sinℎ𝑃 “ 0.37 ùñ ℎ𝑃 “ 21.4˝
ą 0˝.

At this moment, the other two stars are indeed above the horizon. As the latitude decreases from

this maximum, the altitudes of all stars at culmination will initially increase. This continues

until the northernmost star reaches the zenith. After this point, the culmination altitudes will

begin to decrease as the stars culminate north of the zenith.

Similarly, for the southernmost latitude, we check the visibility of the other stars at the moment

of Betelgeuse’s upper culmination, which corresponds to the sidereal time 𝛼𝐵 “ 5h 56m.

The hour angles of Sirius and Procyon are:

𝑡𝑆 “ 5h 56m ´ 6h 45m “ ´49m “ ´12.25˝,

𝑡𝑃 “ 5h 56m ´ 7h 40m “ ´1h 44m “ ´26.00˝.
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We then calculate the stars’ altitudes at these hour angles:

sinℎ𝑆 “ sin𝜙 sin 𝛿𝑆 ` cos𝜙 cos 𝛿𝑆 cos 𝑡𝑆,

sinℎ𝑆 “ sin p´82˝361
q sin p´16˝451

q ` cos p´82˝361
q cos p´16˝451

q cos p´12.25˝
q ,

sinℎ𝑆 “ 0.41 ùñ ℎ𝑆 “ 24˝
ą 0˝.

sinℎ𝑃 “ sin𝜙 sin 𝛿𝑃 ` cos𝜙 cos 𝛿𝑃 cos 𝑡𝑃 ,

sinℎ𝑃 “ sin p´82˝361
q sin 5˝101

` cos p´82˝361
q cos 5˝101 cos p´26.00˝

q ,

sinℎ𝑃 “ 0.026 ùñ ℎ𝑃 “ 1.5˝
ą 0˝.

At the moment of Betelgeuse’s upper culmination, the other two stars are also confirmed to be

above the horizon.

Therefore, the entire range of latitudes from ´82˝361 to 73˝151 is suitable for simultaneously

observing the asterism. The fraction of the Earth’s surface area within this latitudinal range

is given by

1 ´
1 ´ sin 73˝ 151

2
´

1 ´ | sinp´82˝ 361q|

2
“ 0.97.

d) If the altitudes of all stars in the triangle are equal, the zenith must be equidistant from

the vertices of the triangle on the celestial sphere. Our goal is to find the equatorial coordinates

p𝛼0; 𝛿0q of this point, which is equidistant from the three stellar positions.

On the unit sphere, the condition for equal angular distances is equivalent to the dot products

between the unit vector to the zenith and the unit vectors to each star being equal. Representing

these vectors in the Cartesian equatorial coordinate system, we have:

r𝑃 “

¨

˚

˚

˝

cos 𝛿𝑃 cos𝛼𝑃

cos 𝛿𝑃 sin𝛼𝑃

sin 𝛿𝑃

˛

‹

‹

‚

“

¨

˚

˚

˝

´0.421

0.903

0.090

˛

‹

‹

‚

, r𝑆 “

¨

˚

˚

˝

cos 𝛿𝑆 cos𝛼𝑆

cos 𝛿𝑆 sin𝛼𝑆

sin 𝛿𝑆

˛

‹

‹

‚

“

¨

˚

˚

˝

´0.187

0.939

´0.288

˛

‹

‹

‚

,

r𝐵 “

¨

˚

˚

˝

cos 𝛿𝐵 cos𝛼𝐵

cos 𝛿𝐵 sin𝛼𝐵

sin 𝛿𝐵

˛

‹

‹

‚

“

¨

˚

˚

˝

0.017

0.992

0.129

˛

‹

‹

‚

, r𝑧 “

¨

˚

˚

˝

cos 𝛿0 cos𝛼0

cos 𝛿0 sin𝛼0

sin 𝛿0

˛

‹

‹

‚

“

¨

˚

˚

˝

𝑋0

𝑌0

𝑍0

˛

‹

‹

‚

.

$

’

’

&

’

’

%

r𝑃 ¨ r𝑧 “ r𝑆 ¨ r𝑧 ,

r𝑃 ¨ r𝑧 “ r𝐵 ¨ r𝑧 ,

𝑋2
0 ` 𝑌 2

0 ` 𝑍2
0 “ 1

ùñ

$

’

’

&

’

’

%

´0.421𝑋0 ` 0.903𝑌0 ` 0.090𝑍0 “ ´0.187𝑋0 ` 0.939𝑌0 ´ 0.288𝑍0 ,

´0.421𝑋0 ` 0.903𝑌0 ` 0.090𝑍0 “ 0.017𝑋0 ` 0.992𝑌0 ` 0.129𝑍0 ,

𝑋2
0 ` 𝑌 2

0 ` 𝑍2
0 “ 1.
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We can solve the system by first expressing 𝑋0 and 𝑌0 in terms of 𝑍0 using the first two

equations. Substituting these expressions into the third equation yields an equation for 𝑍0.

$

’

’

&

’

’

%

𝑋0 “ 6.929𝑍0 ,

𝑌0 “ ´34.54𝑍0 ,

𝑋2
0 ` 𝑌 2

0 ` 𝑍2
0 “ 1

ùñ

$

’

’

&

’

’

%

𝑋0 “ 6.929𝑍0 ,

𝑌0 “ ´34.54𝑍0 ,

|𝑍0| “ | sin 𝛿0| “ 0.028.

The declination of the zenith point corresponds directly to the observer’s latitude. Therefore,

the possible observation latitudes are ˘ arcsinp0.028q “ ˘1.6˝.

Furthermore, the geometry of the configuration indicates that for an observer in the northern

hemisphere the point of equal altitude will be located near the nadir. Conversely, for an observer

in the southern hemisphere it will be near the zenith.

Marking Scheme:

• Question (a) Star identification

3 pt.: 1 pt for each correctly identified star

• Question (b) Always above the horizon

1. Any meaningful drawing — 1 pt.

2. Any sound reasoning based on the drawing or celestial coordinates.

If there is no picture, full points are still given for this part if the reasoning remains

sound — 2 pt.

3. Correct answer (0) — 2 pt.

• Question (c) Sometimes above the horizon

1. Any approximately correct culminations are written down — 2 pt.

2. Proof of simultaneity by any correct method — 2 pt.

3. Correct formula for the area of the spherical segment (fraction of sphere) — 1 pt.

4. Correct numerical answer — 1 pt.

• Question (d) Together at the same altitude

1. Idea for finding the answer (understanding that it depends only on latitude and that

an equidistant point needs to be found) — 2 pt.

2. Correct analytical (formula-based) implementation of the idea — 2 pt.

3. Correct numerical answer for latitude — 1 pt.

4. Statement about two possible answers (latitudes) — 1 pt.
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3 Swing of the Spheres

Because of annual aberration, a G2V star (Sun-like) draws an ellipse on the celestial sphere

with an eccentricity of 0.4. Its annual parallax is 1% of the maximum aberrational shift.

a) Determine the distance to the star.

b) Estimate the minimum baseline of an optical interferometer that can resolve at least some

details on the stellar disk at such distance.

c) What is the apparent magnitude of such an object? Are there any known G2V stars

at such distance?

d) Estimate the surface brightness of the stellar disk. Express the result in mag{arcsec2.

e) Find the possible altitude range of the upper culmination of this star for an observer

in the city of Sochi (43.6˝ N).

Solution:

a) The maximum aberrational displacement is determined by the Earth’s full orbital velocity

and is given by 𝜃 “ 𝑣‘{𝑐 “ 10´4 rad “ 20.62. Although one could use the Earth’s velocity

at perihelion to account for orbital ellipticity, this refinement is not essential for this calculation.

In this case, the parallactic displacement is 0.2062, which corresponds to a distance of

𝑟 “ 1{0.206 « 4.9 rpcs.

b) To resolve details on the star’s disk, the telescope’s angular resolution must be finer than

the star’s angular diameter. For a rough estimate, we can require the resolution to be better

than approximately 0.2 times the angular size. Participants may use any reasonable factor

for this estimation.

The angular resolution of an optical interferometer is given by:

𝛼 „
𝜆

𝐷
,

where 𝜆 is the wavelength of observed radiation and 𝐷 is the baseline (the distance between

the telescopes).

The angular diameter 𝑑 of the star is related to its physical radius 𝑅 and distance 𝑟:

𝑑 “
2𝑅

𝑟
.

Equating the required resolution to the interferometer’s resolution gives:

0.2 ¨
2𝑅

𝑟
„

𝜆

𝐷
.
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Using an observation wavelength of 550 nm (visible spectrum characteristic wavelength—

green light), we can solve for the required baseline 𝐷:

𝐷 „
𝜆𝑟

0.4𝑅d

“
5.5 ¨ 10´7 m ¨ 4.9 ˆ 3.1 ¨ 1013 km

0.4 ˆ 6.96 ¨ 105 km
„ 3 ¨ 102 m.

This calculated distance is similar to the maximum baseline of the CHARA optical

interferometer.

c) The distance to the object is relatively small, so interstellar extinction is negligible.

The relation between the apparent magnitude 𝑚, absolute magnitude 𝑀 , and distance 𝑟 (in

parsecs) is

𝑚 “ 𝑀 ´ 5 ` 5 log 𝑟 “ 4.8m ´ 5 ` 5 log 4.9 « 3.3m.

The object described would be a bright, Sun-like star. However, no stars fitting this description

are observed at the calculated distance of 4.9 pc. Most nearby stars are cooler than the Sun,

and the well-known Alpha Centauri system is significantly closer. The star with parameters

most similar to those in this problem is 𝜏 Ceti: it is somewhat cooler (spectral type G8V) and

slightly closer (3.7 pc) than the 4.9 pc distance we obtained.

d) To estimate the surface brightness of the star’s disk, we neglect limb darkening and assume

uniform brightness across its surface. Under this assumption, the apparent magnitude of the

entire disk 𝑚 can be related to the apparent magnitude per square arcsecond 𝜇 using Pogson’s

formula:

𝑚 ´ 𝜇 “ ´2.5 log
`

𝑆{arcsec2
˘

“ ´2.5 log

ˆ

𝜋
𝑑2

4

˙

.

The angular diameter of the disk, expressed in terms of its physical diameter and distance,

is converted to arcseconds as follows:

𝜇 “ 𝑚 ´ 2.5 log

ˆ

𝜋 ¨
p2𝑅d{𝑟 ¨ 206265q2

4

˙

“ ´10.6m{arcsec2.

Alternative way. It may be recalled that, in the absence of absorption, the surface brightness

of objects does not depend on distance. The desired quantity is equal to the surface brightness

of the solar disk. The apparent solar diameter is approximately 311 “ 1 8602:

𝜇 “ ´26.7m ` 2.5 log
`

𝜋 ¨ 18602{4
˘

“ ´10.6m{arcsec2.

e) The eccentricity of the aberration ellipse is related to the ecliptic latitude of the star.

The minor axis of the aberration ellipse is related to the semi-major axis 𝑎 “ 𝜃 as 𝑏 “ 𝜃 sin 𝛽,

whence the eccentricity is

𝑒 “

c

1 ´
𝑏2

𝑎2
“

b

1 ´ sin2 𝛽 “ cos 𝛽.

Consequently, for an eccentricity of 𝑒 “ 0.4, the ecliptic latitude is 𝛽 “ ˘ arccos 0.4 « ˘66.4˝.
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The ecliptic longitude of the star is unspecified. Consequently, we have to estimate the possible

range of altitudes at upper culmination using the known ecliptic latitude 𝛽 and geographic

latitude 𝜙 “ 43.6˝. To determine the corresponding declination 𝛿, which is required for the

altitude calculation, we apply the spherical law of cosines:

sin 𝛿 “ sin 𝜀 sin𝜆 cos 𝛽 ` cos 𝜀 sin 𝛽.

sin 𝛿min “ cos 𝜀 sin 𝛽 ´ sin 𝜀 cos 𝛽 “ sinp𝛽 ´ 𝜀q ùñ 𝛿min “ 𝛽 ´ 𝜀,

sin 𝛿max “ cos 𝜀 sin 𝛽 ` sin 𝜀 cos 𝛽 “ sinp𝛽 ` 𝜀q ùñ 𝛿max “ 𝛽 ` 𝜀.

The minimum declination occurs when the star is located near the winter solstice point

(sin𝜆 “ ´1), and the maximum declination occurs near the summer solstice point (sin𝜆 “ `1).

Northern hemisphere Southern hemisphere

𝛽 “ `66.4˝ 𝛽 “ ´66.4˝

𝛿min “ `43.0˝ 𝛿min “ ´89.8˝

𝛿max “ `89.8˝ 𝛿max “ ´43.0˝

We now estimate the culmination altitudes. For the northern celestial hemisphere, the

observer’s latitude falls within the calculated range of declinations, meaning the star’s

declination can equal the latitude. This implies the star can pass directly through the zenith

(altitude ℎ “ 90˝) at upper culmination. To find the minimum possible altitude at upper

culmination, we use the extreme declination values:

ℎp𝛿minq “ 90˝
´ |𝜙 ´ 𝛿min| “ 90˝

´ |43.6˝
´ 43.0˝

| “ 89.4˝,

ℎp𝛿maxq “ 90˝
´ |𝜙 ´ 𝛿max| “ 90˝

´ |43.6˝
´ 89.8˝

| “ 43.8˝.

Thus, the altitude at upper culmination ranges from `43.8˝ to `90˝.

For the southern celestial hemisphere,

ℎp𝛿minq “ 90˝
´ |𝜙 ´ 𝛿min| “ 90˝

´ |43.6˝
` 43.0˝

| “ `3.4˝,

ℎp𝛿maxq “ 90˝
´ |𝜙 ´ 𝛿max| “ 90˝

´ |43.6˝
` 89.8˝

| “ ´43.4˝.

Thus, the altitude at upper culmination ranges from ´43.4˝ to 3.4˝.

Marking Scheme:

• Question (a) Distance

1. Estimate of maximum aberration — 1 pt.

2. Parallax — 1 pt.

3. Distance from parallax — 2 pt.

If the distance is incorrect, subsequent items are not penalized if it is used further.
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• Question (b) Interferometer baseline

1. Angular size of the star — 2 pt.

2. Baseline length — 2 pt.

• Question (c) Apparent magnitude

1. Comparison with the Sun, using the apparent magnitude — 1 pt.

2. Apparent and absolute magnitude — 2 pt.

3. No Sun-like stars exist at such a distance — 2 pt.

• Question (d) Surface brightness — 2 pt.

• Question (e) Altitudes of upper culmination

1. Ecliptic latitude from ellipse eccentricity (recalling or deriving) — 2 pt.

2. Range of possible declinations — 1 pt.

3. Altitudes of upper culmination — 2 pt.
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4 Tides on a Rod

𝑚

𝑚

𝐿

An experimental gradiometer satellite consists of a thin, rigid, massless rod

of length 𝐿 “ 40 m with small masses 𝑚 “ 500 kg at its ends. Its center

moves in a circular orbit at an altitude ℎ “ 400 km above the Earth’s surface.

In equilibrium, the rod is oriented radially toward the Earth’s center.

Assume that the Earth’s gravitational field is the same as that of a point mass:

gprq “ ´
𝐺M‘

𝑟3
r.

a) Determine the orbital period of the satellite, neglecting the rod’s length.

b) Find a small correction to the satellite’s circular orbital speed that comes from the fact

that it isn’t a point, but has a finite length 𝐿:

𝑣 «

d

𝐺M‘

𝑅‘ ` ℎ

ˆ

1 ` [some number]
𝐿2

p𝑅‘ ` ℎq2

˙

.

c) Find the period of small oscillations of the satellite about the equilibrium in the orbital

plane, assuming that the satellite’s center continues to move in a circular orbit.

Solution:

a) The radius of satellite’s orbit is 𝑟0 “ 𝑅‘`ℎ. For a circular orbit, the centripetal acceleration

is provided by gravity:

𝑣20
𝑟0

“
𝐺M‘

𝑟20
ùñ 𝑣0 “

c

𝐺M‘

𝑟0
, 𝜔0 “

d

𝐺M‘

𝑟30
;

𝑇0 “
2𝜋𝑟0
𝑣0

“ 2𝜋

d

𝑟30
𝐺M‘

“ 2𝜋

d

p𝑅‘ ` ℎq3

𝐺M‘

“

“ 2 ˆ 3.14 ˆ

d

p6.371 ¨ 106 ` 0.4 ¨ 106q3 m3

6.67 ¨ 10´11 m3

kg¨s2
ˆ 5.97 ¨ 1024 kg

“ 5.5 ¨ 103 s “ 92m « 1.5h.

b) Let ℓ “ 𝐿{2 be the half-length of the rod. The positions of its endpoints are r˘ “ rCOM˘𝜌,

where |𝜌| “ ℓ. By definition, their average gives the center of mass (COM):

rCOM “
r` ` r´

2
, |𝑟COM| “ 𝑟0.

Since internal forces cancel, Newton’s second law for the system gives

2𝑚aCOM “ F` ` F´ “ 𝑚g` ` 𝑚g´ ùñ aCOM “
g` ` g´

2
ùñ 𝑎COM “

𝑔` ` 𝑔´

2
.
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We now compute the gravitational acceleration at the endpoints using the binomial expansion,

noting that ℓ{𝑟0 ! 1:

𝑔p𝑟0 ˘ ℓq “
𝐺M‘

p𝑟0 ˘ ℓq2
“

𝐺M‘

𝑟20

ˆ

1 ˘
ℓ

𝑟0

˙´2

“
𝐺M‘

𝑟20

„

1 ¯ 2
ℓ

𝑟0
` 3

ℓ2

𝑟20
` ¨ ¨ ¨

ȷ

.

“Averaging” the two values cancels the odd term:

𝑎COM “
𝑔p𝑟0 ` ℓq ` 𝑔p𝑟0 ´ ℓq

2
«

𝐺M‘

𝑟20

ˆ

1 ` 3
ℓ2

𝑟20

˙

.

Alternative way. Let us denote 𝑥 “ ℓ{𝑟0 ! 1. We start by simplifying the expression:

1

p1 ` 𝑥q2
`

1

p1 ´ 𝑥q2
“

p1 ´ 𝑥q2 ` p1 ` 𝑥q2

p1 ` 𝑥q2p1 ´ 𝑥q2
“ 2 ¨

1 ` 𝑥2

p1 ´ 𝑥2q2
“ 2 ¨

1 ` 𝑥2

1 ´ 2𝑥2 ` 𝑥4
“

“ 2 ¨
p1 ` 𝑥2qp1 ` 2𝑥2q

p1 ´ 2𝑥2 ` 𝑥4qp1 ` 2𝑥2q
“ 2 ¨

1 ` 3𝑥2
` 2𝑥4

1 ` p2𝑥2 ´ 3q𝑥4

up to 𝑥2

« 2 ¨ p1 ` 3𝑥2
q.

This result simplifies the calculation of the center-of-mass acceleration:

𝑎COM “
1

2
p𝑔` ` 𝑔´q “ 𝐺M‘ ¨

1

2

„

1

p𝑟0 ` ℓq2
`

1

p𝑟0 ´ ℓq2

ȷ

“

“
𝐺M‘

𝑟20
¨
1

2

„

1

p1 ` 𝑥q2
`

1

p1 ´ 𝑥q2

ȷ

«
𝐺M‘

𝑟20

ˆ

1 ` 3
ℓ2

𝑟20

˙

.

For a circular COM orbit,

𝑎COM “
𝑣2

𝑟0
ùñ 𝑣2 «

𝐺M‘

𝑟0

ˆ

1 ` 3
ℓ2

𝑟20

˙

ùñ 𝑣 «

c

𝐺M‘

𝑟0

ˆ

1 `
3

8

𝐿2

p𝑅‘ ` ℎq2

˙

.

Thus, [some number] “
3

8
, and the relative correction to the velocity is

𝑣 ´ 𝑣0
𝑣0

“
3

8

ˆ

𝐿

𝑅‘ ` ℎ

˙2

“
3

8
ˆ

ˆ

40 m

6.371 ¨ 106 m ` 0.4 ¨ 106 m

˙2

“ 1.3 ¨ 10´11.

c) When the rod is tilted by a small angle 𝜃, each end feels a force that is

• slightly stronger/weaker because of being nearer/farther, and

• points in a direction turned by a small angle because the end is shifted sideways.

The combination of these effects produces a net torque about the center of mass, which acts

as a restoring torque:

𝑀 “ 𝐹` ¨
𝐿

2
sin 𝜃` ´ 𝐹´ ¨

𝐿

2
sin 𝜃´,
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where

𝐹˘ “ 𝑚 ¨ 𝑔p𝑟0 ˘ ℓ cos 𝜃q,

𝜃˘ « 𝜃 ¯
ℓ sin 𝜃

𝑟0
.

We begin by expanding the gravitational acceleration at each end of the rod 𝑔p𝑟0 ˘ ℓ cos 𝜃q,

noting that ℓ{𝑟0 ! 1:

𝑔p𝑟0 ˘ ℓ cos 𝜃q “
𝐺M‘

p𝑟0 ˘ ℓ cos 𝜃q2
“

𝐺M‘

𝑟20

ˆ

1 ˘
ℓ cos 𝜃

𝑟0

˙´2

“
𝐺M‘

𝑟20

„

1 ¯ 2
ℓ cos 𝜃

𝑟0
` ¨ ¨ ¨

ȷ

.

For small angles 𝜃 ! 1, we use the approximations sin 𝜃 « 𝜃, cos 𝜃 « 1. The restoring torque

about the center of mass, calculated to first order, is

𝑀 «
𝐺M‘𝑚

𝑟20
¨ ℓ𝜃 ¨

„ˆ

1 ´ 2
ℓ

𝑟0

˙

¨

ˆ

1 ´
ℓ

𝑟0

˙

´

ˆ

1 ` 2
ℓ

𝑟0

˙

¨

ˆ

1 `
ℓ

𝑟0

˙ȷ

« ´
6𝐺M‘𝑚

𝑟20

ℓ2

𝑟0
𝜃.

The moment of inertia of the two end masses about the COM in the orbital plane is

𝐽 “ 2𝑚ℓ2.

Using the torque above, we obtain the equation of motion for a harmonic oscillator

𝐽 :𝜃 “ 𝑀 ùñ :𝜃 ` 3
𝐺M‘

𝑟30
𝜃 “ 0.

Therefore, the angular frequency and period of small librations are:

𝜔osc “
?
3 ¨

d

𝐺M‘

𝑟30
“

?
3𝜔0,

𝑇osc “
2𝜋

𝜔osc

“
𝑇0
?
3

“
5.5 ¨ 103 s

1.73
“ 3.2 ¨ 103 s “ 53m « 0.9h.

Elegant shortcut. In the reference frame co-rotating with the rod’s center of mass,

the effective potential combines Earth’s gravity and the centrifugal potential:

𝑈p𝑟q “ ´
𝐺M‘

𝑟
´

1

2
𝜔2
0𝑟

2.

The center of mass is in mechanical equilibrium at the orbital radius 𝑟 “ 𝑟0, satisfying:

𝑈 1
p𝑟q

ˇ

ˇ

ˇ

𝑟“𝑟0
“ 0 “

𝐺M‘

𝑟20
´ 𝜔2

0𝑟0 ùñ 𝜔2
0 “

𝐺M‘

𝑟30
,

which is the standard expression for the orbital angular velocity.
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The tidal acceleration near 𝑟0 is given by the second derivative of the potential. To first order:

𝑎tidalp𝑟q « 𝑈2
p𝑟0q ¨ p𝑟 ´ 𝑟0q “

ˆ

´
2𝐺M‘

𝑟30
´ 𝜔2

0

˙

¨ p𝑟 ´ 𝑟0q “ ´
3𝐺M‘

𝑟30
¨ p𝑟 ´ 𝑟0q.

𝑔eff

𝑔eff

fixed

For small angular deflections, the system can be modeled as two simple

pendulums of length 𝐿{2, oscillating in the effective tidal field, each

in a uniform field with acceleration

𝑔eff “
3𝐺M‘

𝑟30
¨
𝐿

2
.

The corresponding oscillation period is

𝑇osc “ 2𝜋

d

𝐿{2

𝑔eff
“ 2𝜋

d

𝑟30
3𝐺M‘

“
𝑇0
?
3
.

Marking Scheme:

• Question (a) Orbital period

- Correct expression for the period — 2 pt.

- Calculations and correct answer — 2 pt.

• Question (b) Correction to circular speed

- Correct Newton’s 2nd law — 2 pt.

- Correct series expansion — 4 pt.

- Correct numerical result — 2 pt.

• Question (c) Period of small oscillations

- Correct physical laws and relations that can be used to derive the differential

equation for harmonic oscillations — 4 pt.

- Correct harmonic motion equation — 2 pt.

- Correct numerical result — 2 pt.
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5 Above the Photosphere

For a main-sequence star, the difference in free-fall acceleration in the photosphere

and at the upper boundary of the chromosphere (10 000 km above the photosphere),

measured above the star’s pole, is 8 m{s2. It is also known that from the upper boundary

of the chromosphere, only 0.7% of the entire photosphere is visible.

a) Estimate the mass, radius, and temperature of the star.

b) Which spectral and luminosity class does this star belong to?

c) Estimate the minimum possible rotational period of the star.

Solution:

𝑂

𝐶

𝑃

𝑅
𝑅

ℎ

𝜃

𝜃

a) An observer (point 𝑂) at a height ℎ above the photosphere

of a star of radius 𝑅 sees a spherical cap defined by the angle 𝜃.

The solid angle subtended by this cap is

Ω “ 2𝜋p1 ´ cos 𝜃q, where cos 𝜃 “
𝑅

𝑅 ` ℎ
.

The fraction 𝑓 of the total 4𝜋 steradians is therefore:

𝑓 “
Ω

4𝜋
“

2𝜋p1 ´ cos 𝜃q

4𝜋
“

1 ´ cos 𝜃

2
“

1 ´ 𝑅
𝑅`ℎ

2
“

ℎ

2p𝑅 ` ℎq
.

Solving for the radius 𝑅:

𝑅 “
ℎp1 ´ 2𝑓q

2𝑓
“

1.0 ¨ 107 m ˆ p1 ´ 2 ˆ 0.007q

2 ˆ 0.007
“

1.0 ¨ 107 m ˆ 0.986

0.014
« 7.0 ¨ 108 m “ 1.0𝑅d .

The free-fall acceleration at a distance 𝑟 from the center:

𝑔 “
𝐺M

𝑟2
.

The difference in the gravitational acceleration between two locations is

∆𝑔 “
𝐺M

𝑅2
´

𝐺M

p𝑅 ` ℎq2
“ 𝐺M

ˆ

1

𝑅2
´

1

p𝑅 ` ℎq2

˙

.

Given ℎ ! 𝑅, we simplify the expression in parentheses:

1

𝑅2
´

1

p𝑅 ` ℎq2
“

p𝑅 ` ℎq2 ´ 𝑅2

𝑅2p𝑅 ` ℎq2
“

𝑅2 ` 2𝑅ℎ ` ℎ2 ´ 𝑅2

𝑅2p𝑅 ` ℎq2
“

2𝑅ℎ ` ℎ2

𝑅2p𝑅 ` ℎq2
«

2𝑅ℎ

𝑅2 ¨ 𝑅2
“

2ℎ

𝑅3
.

Thus,

∆𝑔 «
2𝐺Mℎ

𝑅3
.
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Solving for the mass:

M «
∆𝑔 𝑅3

2𝐺ℎ
“

8 m{s2 ˆ p7.0 ¨ 108 mq3

2 ˆ 6.67 ¨ 10´11 m3

kg¨s2
ˆ 1.0 ¨ 107 m

« 2.06 ¨ 1030 kg “ 1.04Md.

Using the mass-luminosity relation 𝐿 9 M4 for main-sequence stars, we find the luminosity

relative to the Sun:
𝐿

𝐿d

«

ˆ

M

Md

˙4

« 1.044 « 1.2.

The Stefan-Boltzmann law 𝐿 “ 4𝜋𝑅2𝜎𝑇 4 in relative terms is

𝐿

𝐿d

“

ˆ

𝑅

𝑅d

˙2 ˆ

𝑇

𝑇d

˙4

ùñ
𝑇

𝑇d

“
4

d

𝐿{𝐿d

p𝑅{𝑅dq2
“

4

c

1.044

1.02
« 1.04.

b) Such temperature is typical for early G-type or late F-type stars. They are quite similar

to the Sun (G2V, 5778 K). The star is on the main sequence (luminosity class V).

c) The minimum rotational period occurs when the star’s equatorial velocity reaches the first

cosmic (circular) velocity. At this limit, the centrifugal force balances gravity at the equator.

Hence, the corresponding minimum period is the orbital period:

𝑇min “
2𝜋𝑅

𝑣max

“ 2𝜋

c

𝑅3

𝐺M
“ 2 ˆ 3.14 ˆ

d

p7 ¨ 108 mq3

6.67 ¨ 10´11 m3

kg¨s2
ˆ 2 ¨ 1030 kg

« 1.0 ¨ 104 s.

It is important to note that this is a simplified estimate. In reality, as rotational velocity

increases, the star deforms into an oblate spheroid. A more accurate treatment would require

modeling the surface as an equipotential, where the effective gravity incorporates the centrifugal

potential. However, for the purpose of a rough estimation, the spherical model is adequate.

Marking Scheme:

• Question (a) Mass, radius, and temperature

1. Estimate for the radius — 1+1 pt.

2. Estimate for the mass — 2+2 pt.

3. Estimate for the luminosity — 2+2 pt.

4. Estimate for the temperature — 2+2 pt.

• Question (b) Spectral type — 2 pt.

• Question (c) Minimum rotational period

- Maximum possible velocity on the equator or equivalent — 2 pt.

- Minimum rotational period — 2 pt.
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6 Glimpse of GLIMPSE

The cluster GLIMPSE-C01 is located in the Milky Way. The tip of the red giant branch

(TRGB) corresponds to an apparent magnitude of𝐾 “ 8.7m. Its absolute magnitude, assuming

a metallicity of rFe{Hs “ ´1.5, is 𝑀𝐾 “ ´6.1m (Ivanov et al., 2005).

a) Assuming the extinction is 𝑎𝐾 “ 0.45 mag{kpc, estimate the distance to the cluster.

b) Estimate the total extinction 𝐴𝑉 in the 𝑉 band, given the cluster’s Galactic coordinates:

latitude 𝑏 “ 0˝, longitude 𝑙 “ 31˝.

Note. According to Rieke&Lebofsky (1985), 𝑎𝑉 {𝑎𝐾 “ 9.

c) In reality, the extinction, even in the 𝐾 band, is uncertain: 𝑎𝐾 “ 0.45 ˘ 0.08 mag{kpc.

Find the uncertainty in the distance.

d) Is this cluster more likely a globular cluster or an open cluster? Explain.

Solution:

a) The relationship between the apparent magnitude, absolute magnitude, distance,

and interstellar extinction is given by

𝐾 “ 𝑀𝐾 ´ 5 ` 5 lgp𝑟{pcq ` 𝑎𝐾 ¨ p𝑟{1000 pcq ùñ 5 lgp𝑟{pcq ` 0.45 ¨ p𝑟{1000 pcq “ 19.8m.

We solve this equation numerically using the bisection method. Since both terms on the left-

hand side are monotonically increasing functions of 𝑟, the equation has a single root. Define

the function:

𝑓p𝑟q “ 5 lgp𝑟{pcq ` 0.45 ¨ p𝑟{1000 pcq ´ 19.8.

We evaluate this function at several test points to bracket the root:

𝑟{pc r1000 10000s r3000 5000s 4000

𝑓p𝑟q ´4.35 4.70 ´1.06 0.94 0.01

Therefore, the distance is approximately 4 kpc.

b) The problem provides the ratio of absorption coefficients in two bands. Given the previously

determined distance and the absorption coefficient in the 𝐾 band, the total absorption

in the 𝑉 band is:

𝐴𝑉 “ 𝑎𝑉 ¨ 𝑟 “ 9𝑎𝐾 ¨ 𝑟 “ 9 ˆ 0.45 mag{kpc ˆ 4 kpc “ 16.2 mag.

c) The uncertainty in the extinction value is significant. Although this uncertainty is symmetric

in magnitude space, it translates into an asymmetric range of possible distances. The most

straightforward method to determine this range is to calculate the distance using the upper

and lower bounds of the extinction coefficient:
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5 lgp𝑟min{pcq ` 0.53 ¨ p𝑟min{1000 pcq “ 19.8m ùñ 𝑟min “ 3.7 ¨ 103 pc.

5 lgp𝑟max{pcq ` 0.37 ¨ p𝑟max{1000 pcq “ 19.8m ùñ 𝑟max “ 4.3 ¨ 103 pc.

Thus, accounting for rounding, the distance estimate is 4.0 ˘ 0.3 kpc. In reality, a more

precise calculation using better initial data would likely yield a slightly larger upper uncertainty,

revealing an asymmetric error interval.

d) The specified condition of low metallicity immediately rules out a young open cluster.

The high absolute magnitude of the tip of the red giant branch indicates the presence of highly

luminous, evolved stars. This stellar population is more typical for a globular cluster or a very

old open cluster— the latter being quite rare. The object’s location in the Galactic plane,

combined with its longitude pointing toward the central region, is consistent with the known

distribution of globular clusters, which can have such coordinates.

In conclusion, the object is most likely a globular cluster (which is consistent with its actual

identity), although an old open cluster remains a remote theoretical possibility.

Marking Scheme:

• Question (a) Distance to the cluster

1. Equation relating stellar magnitudes, distance, and absorption — 3 pt.

2. Number of possible solutions to the equation — 2 pt.

3. Correct answer — 2 pt.

• Question (b) Total extinction in 𝑉 band

1. Relation for absorption in two bands — 2 pt.

2. Correct answer — 2 pt.

• Question (c) Uncertainty in the distance

1. Relation for the uncertainty in distance or stating the method of calculating the

boundary values — 2 pt.

2. Correct answers — 1+1 pt.

• Question (d) Cluster type

1. Correct reasoning concerning the cluster’s classification — 4 pt.

2. Correct binary answer — 1 pt.
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7 Nothing to Do There

A spacecraft moves along a Hohmann transfer ellipse in the ecliptic plane from the Earth

to Jupiter. This ellipse touches the Earth’s orbit at perihelion and Jupiter’s orbit at aphelion.

a) How long would the spacecraft take to travel from the Earth to Jupiter along this

trajectory?

At true anomaly 𝜃0 “ 90˝ (heliocentric distance 𝑟𝑓 ), the engine is fired briefly. The spacecraft

receives a velocity change w with magnitude |w| “ 1
2

|v𝑓 |, where v𝑓 is its current velocity.

The impulse makes an angle 𝑖0 “ 20˝ to the plane of the initial orbit, and its projection onto

the ecliptic is aligned with the initial velocity. Assume the Earth’s and Jupiter’s orbits are

circular and lie in the same plane.

b) By what angle 𝛾 does the spacecraft’s velocity vector turn after the impulse?

c) Find the semi-major axis, eccentricity, and inclination of the new orbit after the impulse.

d) How far above Jupiter’s orbit (𝑟𝑧) will the spacecraft fly by?

𝑟𝑧

𝑎𝐽

𝑟𝑓

v𝑓

v w

𝛾 𝑖0
𝜃0
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Solution:

a) First, we determine the semi-major axis and eccentricity of the Hohmann transfer ellipse:

𝑎0 “
𝑎‘ ` 𝑎𝐽

2
“

1.00 au ` 5.20 au

2
“ 3.10 au,

𝑒0 “ 1 ´
𝑎‘

𝑎0
“ 1 ´

1.00

3.10
“ 0.68.

Let us estimate the travel time. The transfer along the Hohmann ellipse covers half

its circumference, so the time of flight is half its orbital period:

∆𝑇 {yr “
1

2
p𝑎0{auq

3{2
“

1

2
ˆ 3.103{2

« 2.70.

b) The distance from the Sun on an elliptical orbit depends on the true anomaly as follows:

𝑟p𝜃q “
𝑎p1 ´ 𝑒2q

1 ` 𝑒 cos 𝜃
.

For 𝜃0 “ 90˝ we obtain

𝑟𝑓 “ 𝑎0
`

1 ´ 𝑒20
˘

“ 3.10 au ˆ p1 ´ 0.682q “ 1.68 au.

We can then find the velocity at this point using the vis-viva equation:

𝑣2𝑓 “ 𝐺Md

ˆ

2

𝑟𝑓
´

1

𝑎0

˙

ùñ 𝑣𝑓 “

d

6.67 ¨ 10´11
m3

kg ¨ s2
ˆ

1.99 ¨ 1030 kg

1.496 ¨ 1011 m
ˆ

ˆ

2

1.68
´

1

3.10

˙

“ 27.8 km{s.

The magnitude of the velocity increment is |w| “ 𝑤 “ 0.5𝑣𝑓 “ 13.9 km{s. The spacecraft’s final

velocity magnitude 𝑣 after the impulse can be found by applying the law of cosines to the velocity

vector triangle:

𝑣2 “ 𝑣2𝑓 ` 𝑤2
´ 2𝑣𝑓 ¨ 𝑤 ¨ cosp180˝

´ 𝑖0q

ùñ 𝑣
L

km
s

“
?
27.82 ` 13.92 ` 2 ˆ 27.8 ˆ 13.9 ˆ cos 20˝ “ 41.2.

Finally, we determine the new orbital parameters. The inclination angle 𝛾 of the velocity vector

relative to the ecliptic plane is found by applying the law of cosines again:

𝑤2
“ 𝑣2𝑓 ` 𝑣2 ´ 2𝑣𝑣𝑓 cos 𝛾

ùñ 𝛾 “ arccos
𝑣2𝑓 ` 𝑣2 ´ 𝑤2

2𝑣𝑣𝑓
“ arccos

27.82 ` 41.22 ´ 13.92

2 ˆ 41.2 ˆ 27.8
“ 6.6˝.
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c) The new orbit’s semi-major axis is found using the vis-viva equation:

𝑣2 “ 𝐺Md

ˆ

2

𝑟𝑓
´

1

𝑎

˙

ùñ 𝑎 “
𝑟𝑓

2 ´
𝑣2𝑟𝑓
𝐺Md

“
1.68 au

2 ´
p41.2 ¨ 103 m{sq2 ˆ 1.68 ˆ 1.496 ¨ 1011 m

6.67 ¨ 10´11 m3

kg¨s2
ˆ 1.99 ¨ 1030 kg

“ ´1.4 au.

The orbit is hyperbolic. We estimate the orbit’s eccentricity using the conservation of angular

momentum. This requires finding the angle between the new velocity vector and the radius

vector.

We introduce a Cartesian coordinate system with its origin at the Sun. The 𝑥-axis is directed

toward the vertex of the focal parameter, the 𝑦-axis toward the apocenter of the Hohmann

orbit, and the 𝑧-axis is perpendicular to the ecliptic. The angle between r𝑓 and v𝑓 is then

determined from the law of conservation of angular momentum:

𝑣𝑓𝑟𝑓 sin𝛼 “

b

𝐺Md𝑎0p1 ´ 𝑒20q “
a

𝐺Md𝑟𝑓 ùñ 𝛼 “ 55.9˝.

The components of the velocity vector v𝑓 are

𝑣𝑓,𝑥 “ 𝑣𝑓 cos𝛼 “ 15.6 km{s,

𝑣𝑓,𝑦 “ 𝑣𝑓 sin𝛼 “ 23.0 km{s,

𝑣𝑓,𝑧 “ 0 km{s.

The new velocity vector v, which is inclined to the ecliptic, has a projection onto the ecliptic

plane that also forms an angle 𝛼 with the radius vector. Its components are

𝑣𝑥 “ 𝑣 cos𝛼 cos 𝛾 “ 22.9 km/s,

𝑣𝑦 “ 𝑣 sin𝛼 cos 𝛾 “ 33.9 km/s,

𝑣𝑧 “ 𝑣 sin 𝛾 “ 4.8 km/s.

The position vector r𝑓 has components:

𝑟𝑓,𝑥 “ 𝑟𝑓 “ 1.68 au,

𝑟𝑓,𝑦 “ 0 au,

𝑟𝑓,𝑧 “ 0 au.

The angle 𝛽 between r𝑓 and v is found from the dot product:

cos 𝛽 “
v ¨ r𝑓
𝑣 ¨ 𝑟𝑓

“
𝑣𝑥 ¨ 𝑟𝑓,𝑥 ` 𝑣𝑦 ¨ 𝑟𝑓,𝑦 ` 𝑣𝑧 ¨ 𝑟𝑓,𝑧

𝑣 ¨ 𝑟𝑓
“ 0.557 ùñ 𝛽 “ 56.1˝.
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The eccentricity of the new orbit is calculated using the conservation of angular momentum:

𝑣𝑟𝑓 sin 𝛽 “
a

𝐺Md 𝑎 p1 ´ 𝑒2q

ùñ 𝑒 “

d

1 ´
𝑣2𝑟2𝑓 sin

2 𝛽

𝐺Md𝑎
“

“

d

1 ´
p41.2 ¨ 103 m{sq2 ˆ p1.68 ˆ 1.496 ¨ 1011 mq2 ˆ sin2 56.1˝

6.67 ¨ 10´11 m3

kg¨s2
ˆ 1.99 ¨ 1030 kg ˆ p´1.4 ˆ 1.496 ¨ 1011 mq

“ 1.9.

The orbital inclination is determined from the 𝑧-component of the angular momentum vector:

L “ r ˆ v “

¨

˚

˚

˝

𝑟𝑦𝑣𝑧 ´ 𝑟𝑧𝑣𝑦

𝑟𝑧𝑣𝑥 ´ 𝑟𝑥𝑣𝑧

𝑟𝑥𝑣𝑦 ´ 𝑟𝑦𝑣𝑥

˛

‹

‹

‚

.

The inclination of the new orbital plane relative to the ecliptic is given by

𝐿𝑧

𝐿
“

𝑟𝑓,𝑥𝑣𝑦 ´ 𝑟𝑓,𝑦𝑣𝑥
a

p𝑟𝑓,𝑦𝑣𝑧 ´ 𝑟𝑓,𝑧𝑣𝑦q2 ` p𝑟𝑓,𝑧𝑣𝑥 ´ 𝑟𝑓,𝑥𝑣𝑧q2 ` p𝑟𝑓,𝑥𝑣𝑦 ´ 𝑟𝑓,𝑦𝑣𝑥q2
“ 0.990,

6 𝑖 “ 90˝
´ arcsin

𝐿𝑧

𝐿
“ 90˝

´ arcsin 0.990 “ 8˝.

d) To determine the point where the spacecraft will pass above Jupiter’s orbit, we use the

condition that its position in the previously defined coordinate system must satisfy 𝑟2𝑥`𝑟2𝑦 “ 𝑎2𝐽 .

Calculating this position accurately requires finding the rotation angle of the line of apsides

relative to the radius vector at the maneuver point (the orbit’s ascending node). We begin with

finding the true anomaly 𝜃1 of the maneuver point on the hyperbolic trajectory:

𝑟𝑓 “
𝑎p1 ´ 𝑒2q

1 ` 𝑒 cos 𝜃1

ùñ cos 𝜃1 “
1

𝑒

„

𝑎p1 ´ 𝑒2q

𝑟𝑓
´ 1

ȷ

“
1

1.9

„

p´1.4q ˆ p1 ´ 1.92q

1.68
´ 1

ȷ

“ 0.62 ùñ 𝜃1 “ 51˝.

Let 𝑟 be the distance from the Sun to a point on the trajectory. The Cartesian coordinates

of the point are defined as:

𝑟𝑥 “ 𝑟 cosp𝜃 ´ 𝜃1q,

𝑟𝑦 “ 𝑟 sinp𝜃 ´ 𝜃1q cos 𝑖,

𝑟𝑧 “ 𝑟 sinp𝜃 ´ 𝜃1q sin 𝑖.

The condition for passing above Jupiter’s orbit leads to the following equation after substituting
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the orbital equation:

p𝑟 cosp𝜃 ´ 𝜃1qq
2

` p𝑟 sinp𝜃 ´ 𝜃1q cos 𝑖q
2

“ 𝑎2𝐽 ,

1

p1 ` 𝑒 cos 𝜃q2
¨
`

cos2p𝜃 ´ 𝜃1q ` sin2
p𝜃 ´ 𝜃1q cos

2 𝑖
˘

“

ˆ

𝑎𝐽
𝑎p1 ´ 𝑒2q

˙2

.

This equation is solved for the true anomaly 𝜃 using the bisection method. We define

the function

𝑓p𝜃q “
1

p1 ` 𝑒 cos 𝜃q2
¨
`

cos2p𝜃 ´ 𝜃1q ` sin2
p𝜃 ´ 𝜃1q cos

2 𝑖
˘

´

ˆ

𝑎𝐽
𝑎p1 ´ 𝑒2q

˙2

.

The function values at several test points are listed in the table below.

𝜃 r10˝ 100˝s r75˝ 90˝s r95˝ 99˝s 98˝

𝑓p𝜃q ´1.86 0.227 ´1.53 ´0.99 ´0.56 0.03 ´0.15

The root of the equation lies between 𝜃 “ 98˝ and 𝜃 “ 99˝. For an approximate solution,

we take 𝜃 “ 99˝. The corresponding 𝑧-coordinate is then

𝑟𝑧 “
𝑎p1 ´ 𝑒2q

1 ` 𝑒 cos 𝜃
sinp𝜃 ´ 𝜃1q sin 𝑖 « 0.54 au.

Marking Scheme:

• Question (a) Hohmann transfer time

1. Semi-major axis and eccentricity of the ellipse — 1+1 pt. = 2 pt.

2. Transfer time (Kepler’s law, half time, and correct result) —1+1+1 pt. = 3 pt.

• Question (b) Velocity vector turn

1. Formula for the elliptical radius vector, substituting 𝜃0 “ 90˝ — 1 pt.

2. Velocity at the impulse point using the vis-viva equation — 1 pt.

3. Using the law of cosines to find the velocity 𝑣, angle 𝛾, and correct result —

1+1+1 pt. = 3 pt.

• Question (c) Parameters of new orbit

1. Correct estimate for the semi-major axis — 2 pt.

2. Angle 𝛼 on the initial orbit and projections of r𝑓 and v𝑓 — 1 pt.

3. Expressions for the angle 𝛽 and for the magnitude of angular momentum — 1 pt.

4. Correct estimate for the eccentricity — 2 pt.

5. Correct estimate for the inclination — 2 pt.

• Question (d) Above Jupiter’s orbit — 2 pt.
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8 Stellar Blends

The figure shows the light curve of an eclipsing binary system observed in the 𝑉 band.

The eclipses in the system are central. Both components are main-sequence stars, and one

has spectral type A0V.
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a) Determine the spectral type of the second component of the system.

b) Estimate the distance between the two components of the system.

c) What is wrong with the given light curve?

d) Sketch the curve of the system’s color index p𝐵 ´ 𝑉 q as a function of orbital phase, still

assuming the validity of the given light curve.

Solution:

a) The figure shows the 𝑉 -band light curve of a central-eclipse binary. One component is A0V

with 𝑇A0 “ 9700 K. The two eclipse depths read from the curve are

∆𝑚pri “ 0.244 mag (deeper, hotter star eclipsed);

∆𝑚sec “ 0.028 mag.

The equal spacing between successive minima, together with their equal widths, indicates that

the relative orbit is circular.
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A magnitude drop ∆𝑚 corresponds to a fractional flux loss

𝛿 ” 1 ´ 10´0.4Δ𝑚.

Hence

𝛿pri “ 1 ´ 10´0.4ˆ0.244
“ 0.2013,

𝛿sec “ 1 ´ 10´0.4ˆ0.028
“ 0.0255.

For a central eclipse in which the smaller (cooler) star passes in front, the observed flux loss

at primary minimum corresponds to the 𝑉 -band flux from the portion of the hotter star

hidden by the cooler companion, while at secondary minimum it corresponds to the entire

flux of the cooler star being obscured:

∆𝐹pri “ 𝐼ℎ,𝑉 𝐴𝑐, ∆𝐹sec “ 𝐼𝑐,𝑉 𝐴𝑐,

with 𝐴𝑐 denoting the projected disc area of the cool star and 𝐼ℎ,𝑉 , 𝐼𝑐,𝑉 the 𝑉 -band surface

brightnesses of the hot and cool stars, respectively. Taking the ratio of the two light losses

(or equivalently, of the corresponding fractional losses) gives

𝑘𝑉 ”
𝐼ℎ,𝑉
𝐼𝑐,𝑉

“
∆𝐹pri

∆𝐹sec

“
𝛿pri
𝛿sec

“
0.2013

0.0255
“ 7.9.

The secondary depth also fixes the projected area ratio:

𝛿sec “
𝐹𝑐,𝑉

𝐹ℎ,𝑉 ` 𝐹𝑐,𝑉

“
𝐼𝑐,𝑉 𝐴𝑐

𝐼ℎ,𝑉 𝐴ℎ ` 𝐼𝑐,𝑉 𝐴𝑐

“
𝐴𝑐{𝐴ℎ

𝑘𝑉 ` 𝐴𝑐{𝐴ℎ

ùñ
𝐴𝑐

𝐴ℎ

“
𝑘𝑉 𝛿sec
1 ´ 𝛿sec

“
7.9 ˆ 0.0255

1 ´ 0.0255
“ 0.207,

so that the radius ratio is
𝑅𝑐

𝑅ℎ

“

c

𝐴𝑐

𝐴ℎ

“
?
0.207 “ 0.455.

Now we consider A0V as the hotter, larger component.

Since bolometric corrections are negligible for A–G type dwarfs, we may take 𝐼bol 9 𝑇 4

and approximate the 𝑉 -band surface-brightness ratio by

𝑇ℎ

𝑇𝑐

« 𝑘
1{4
𝑉 “ 7.91{4

“ 1.68.

With 𝑇ℎ “ 𝑇A0 “ 9700 K, the companion’s temperature follows as 𝑇𝑐 “ 𝑇ℎ{1.68 « 5.77ˆ103 K,

which corresponds to a Sun-like G2V star. The radius ratio derived from the light-curve minima

is consistent with 𝑅G2 “ 1.0𝑅d and 𝑅A0 “ 2.2𝑅d.
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b) Adopt main-sequence masses 𝑀A0V « 2.2Md and MG2V “ 1.0Md. From the light curve

we read the orbital period 𝑃 “ 1.5 d.

Hence Kepler’s third law in (au; yr; Md) units gives

𝑎{au “
3

a

pM1 ` M2q ¨ p𝑃 {yrq2 “

«

3.2 ˆ

ˆ

1.5

365.25

˙2
ff1{3

“ 0.038;

𝑎 “ 0.038 au “ 5.7 ¨ 106 km « 8𝑅d.

c) Note that 𝑅A0V ` 𝑅G2V « 2.2𝑅d ` 1.0𝑅d “ 3.2𝑅d.

A0V G2V

Roche lobe boundary

Figure 2: Schematic view of the system

Because the stars are so close, out-of-eclipse variability should arise from both ellipsoidal

distortion and reflection effects. Each star heats the hemisphere of its companion that faces

it, creating hot spots and brightness variations. The plotted light curve, however, shows nearly

vertical ingress and egress and flat minima, which are inconsistent with real stellar atmospheres:

limb darkening smooths the contacts and rounds the minima. The figure therefore depicts

an idealized, “boxy” light curve rather than a realistic one.

d) A0V stars are used as calibration “white standards”, with p𝐵 ´𝑉 qA0 “ 0.00 mag. For the

G2V component we adopt the solar value from the constants table, p𝐵 ´ 𝑉 qG2 “ 0.65 mag.

The out-of-eclipse color index of the system is

p𝐵 ´ 𝑉 qout “������: 0
p𝐵 ´ 𝑉 qA0 ` ∆𝐵 ´ ∆𝑉.

Here ∆𝐵 and ∆𝑉 denote the changes in the system’s magnitudes caused by the presence

of the secondary component.
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∆𝑉 “ ´2.5 lg
𝐹ℎ,𝑉 ` 𝐹𝑐,𝑉

𝐹ℎ,𝑉

“ 2.5 lgp1 ´ 𝛿secq “ 2.5 lgp1 ´ 0.0255q “ ´0.028,

∆𝐵 “ ´2.5 lg
𝐹ℎ,𝐵 ` 𝐹𝑐,𝐵

𝐹ℎ,𝐵

“ ´2.5 lg
𝐹ℎ,𝑉 ` 𝐹𝑐,𝑉 ¨ 10´0.4ˆ0.65

𝐹ℎ,𝑉

“

“ ´2.5 lg
𝐼ℎ,𝑉 𝐴ℎ ` 𝐼𝑐,𝑉 𝐴𝑐 ¨ 10´0.4ˆ0.65

𝐼ℎ,𝑉 𝐴ℎ

“ ´2.5 lg

ˆ

1 `
𝐴𝑐 ¨ 10´0.4ˆ0.65

𝑘𝑉 𝐴ℎ

˙

“

“ ´2.5 lg

ˆ

1 `
0.207

7.9
ˆ 10´0.4ˆ0.65

˙

“ ´0.0155.

6 p𝐵 ´ 𝑉 qout “ 0.012 mag.

At primary minimum the hotter star is partially eclipsed. The system becomes slightly redder:

∆𝑉 1
“ ´2.5 lg

𝐹ℎ,𝑉 ¨

´

1 ´ 𝐴𝑐

𝐴ℎ

¯

` 𝐹𝑐,𝑉

𝐹ℎ,𝑉

“ ´2.5 lg
𝐼ℎ,𝑉 𝐴ℎ ¨

´

1 ´ 𝐴𝑐

𝐴ℎ

¯

` 𝐼𝑐,𝑉 𝐴𝑐

𝐼ℎ,𝑉 𝐴ℎ

“

“ ´2.5 lg

„ˆ

1 ´
𝐴𝑐

𝐴ℎ

˙

`
𝐴𝑐

𝐴ℎ

¨
1

𝑘𝑉

ȷ

“ ´2.5 lg

„

1 ´
𝐴𝑐

𝐴ℎ

ˆ

1 ´
1

𝑘𝑉

˙ȷ

“

“ ´2.5 lg

„

1 ´ 0.207 ˆ
6.9

7.9

ȷ

“ 0.217,

∆𝐵1
“ ´2.5 lg

𝐹ℎ,𝐵 ¨

´

1 ´ 𝐴𝑐

𝐴ℎ

¯

` 𝐹𝑐,𝐵

𝐹ℎ,𝐵

“ ´2.5 lg
𝐹ℎ,𝑉 ¨

´

1 ´ 𝐴𝑐

𝐴ℎ

¯

` 𝐹𝑐,𝑉 ¨ 10´0.4ˆ0.65

𝐹ℎ,𝑉

“

“ ´2.5 lg
𝐼ℎ,𝑉 𝐴ℎ ¨

´

1 ´ 𝐴𝑐

𝐴ℎ

¯

` 𝐼𝑐,𝑉 𝐴𝑐 ¨ 10´0.4ˆ0.65

𝐼ℎ,𝑉 𝐴ℎ

“

“ ´2.5 lg

„ˆ

1 ´
𝐴𝑐

𝐴ℎ

˙

`
𝐴𝑐

𝐴ℎ

¨
10´0.4ˆ0.65

𝑘𝑉

ȷ

“ ´2.5 lg

„

1 ´
𝐴𝑐

𝐴ℎ

ˆ

1 ´
10´0.4ˆ0.65

𝑘𝑉

˙ȷ

“

“ ´2.5 lg

„

1 ´ 0.207 ˆ

ˆ

1 ´
10´0.4ˆ0.65

7.9

˙ȷ

“ 0.232.

6 p𝐵 ´ 𝑉 qpri “ ∆𝐵1
´ ∆𝑉 1

“ 0.015 mag.

Brief consistency check: ∆𝑉 1 “ ∆𝑚pri ´ ∆𝑚sec.

At secondary minimum only the A0 star remains visible, so p𝐵 ´ 𝑉 qsec “ 0.00 mag.

Hence the color index curve is nearly flat, with a tiny red “bump” at primary eclipse and a small

blueward excursion (back to « 0) at secondary eclipse (see Fig. 3).
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Figure 3: Sketch of the color index curve of the system

Let A0V be the cooler star.

With 𝑇𝑐 “ 𝑇A0 “ 9700 K, the companion’s temperature is 𝑇ℎ “ 𝑇𝑐 ˆ 1.68 « 16.3 ˆ 103 K,

corresponding to a B3–B4V star. Taking 𝑅A0 “ 2.2𝑅d, the radius ratio derived from the light

curve minima gives

𝑅ℎ “
𝑅𝑐

0.455
« 4.8𝑅d.

However, a typical B3–B4V star has 𝑅B3–B4 « 3.5𝑅d, significantly smaller than

the required value. Such stars have a significant bolometric correction, which strongly affects

the temperature estimate. We adopt the bolometric correction approximation (see Fig. 4)

𝐵𝐶𝑉 « ´5.0

ˆ

lg 𝑇 {K ´ 4

0.8

˙

, 𝑇 ě 104K.

The self-consistency condition relates the bolometric surface brightness ratio (9𝑇 4)

to the measured 𝑉 band ratio 𝑘𝑉 :

𝑇 4
ℎ

𝑇 4
A0

“ 𝑘𝑉 ¨ 10´0.4𝐵𝐶𝑉 p𝑇ℎq
“ 𝑘𝑉

ˆ

𝑇ℎ

104K

˙2.5

.

This yields a closed-form solution

𝑇ℎ{K “

„

p𝑇A0{Kq4 𝑘𝑉
1010

ȷ2{3

“

„

p9.7 ¨ 103q4 ˆ 7.9

1010

ȷ2{3

« 3.7 ¨ 104.

This corresponds to a very hot star of spectral type O. Such stars have radii significantly larger

than 𝑅ℎ (from about 7𝑅d upward). Therefore, even taking the bolometric correction into

account does not allow further development of this case.

The only possible composition of the system is A0V + G2V.
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Figure 4: Bolometric correction – effective temperature relation according to Flower (1996)

Marking Scheme:

• Question (a) Spectral type of 2nd component

1. Ratio of the stars’ temperatures — 3 pt.

2. Spectral type — 2 pt.

• Question (b) Distance between components

1. Mass-luminosity relation or a comparable method — 2 pt.

2. Semi-major axis of the relative orbit (correct method + answer) — 2 pt.

• Question (c) What’s wrong

1. Mention of stellar deformation — 1 pt.

2. Mention of hot spots — 1 pt.

3. Mention of limb darkening — 1 pt.

• Question (d) Sketch for p𝐵 ´ 𝑉 q

1. Quantitative analysis of p𝐵 ´ 𝑉 q curve — 2 pt.

2. Schematic drawing — 3 pt.

• Criterion (x) Consideration of the case where the A0V star is the cooler component

3 pt., includes 1 pt. for mentioning this case
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Constants

Universal

Gravitational constant 𝐺 “ 6.67 ¨ 10´11 m3

kg¨s2

Speed of light 𝑐 “ 3.00 ¨ 108 m{s

Planck constant ℎ “ 6.63 ¨ 10´34 J ¨ s

Boltzmann constant 𝑘𝐵 “ 1.38 ¨ 10´23 J{K

Gas constant R “ 8.314 J{pmol ¨ Kq

Proton mass 𝑚𝑝 “ 1.673 ¨ 10´27 kg

Astronomical

Astronomical unit 1 au “ 149.6 ¨ 106 km

Parsec 1 pc “ 206 265 au

Hubble constant 𝐻0 “ 70 pkm{sq{Mpc

Earth

Radius 𝑅‘ “ 6371 km

Mass M‘ “ 5.97 ¨ 1024 kg

Obliquity of ecliptic 𝜀 “ 23.4˝

Surface gravity 𝑔 “ 9.81 m{s2

Orbital period 𝑇‘ “ 365.26 days

Orbital eccentricity 𝑒‘ “ 0.0167

Hydrogen spectrum

Lyman L𝛼 𝜆L𝛼 “ 1215.7 Å

Balmer H𝛼 𝜆H𝛼 “ 6562.8 Å

Jupiter

Radius 𝑅𝐽 “ 6.99 ¨ 104 km

Mass M𝐽 “ 1.90 ¨ 1027 kg

Orbital radius 𝑎𝐽 “ 5.20 au

Orbital period 𝑇𝐽 “ 11.86 yr

Sun

Radius 𝑅d “ 6.96 ¨ 105 km

Mass Md “ 1.99 ¨ 1030 kg

Absolute magnitude 𝑀d “ 4.74m (bol.)

Effective temperature 𝑇d “ 5.8 ¨ 103 K

Luminosity 𝐿d “ 3.828 ¨ 1026 W

Color index p𝐵 ´ 𝑉 qd “ `0.65m

Emission constants

Stefan–Boltzmann 𝜎 “ 5.67 ¨ 10´8 W
m2¨K4

Wien’s displacement 𝑏 “ 2898 µm ¨ K

UBV. . . system Mean wavelengths

U band 𝜆𝑈 “ 364 nm

B band 𝜆𝐵 “ 442 nm

V band 𝜆𝑉 “ 540 nm

K band 𝜆𝐾 “ 2190 nm


